Background Homologous recombination deficiency (HRD) is a phenotype that is characterized by the inability of a cell to effectively repair DNA double-strand breaks using the homologous recombination repair (HRR) pathway. Loss-of-function genes involved in this pathway can sensitize tumors to poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors and platinum-based chemotherapy, which target the destruction of cancer cells by working in concert with HRD through synthetic lethality. However, to identify patients with these tumors, it is vital to understand how to best measure homologous repair (HR) status and to characterize the level of alignment in these measurements across different diagnostic platforms. A key current challenge is that there is no standardized method to define, measure, and report HR status using diagnostics in the clinical setting. Methods Friends of Cancer Research convened a consortium of project partners from key healthcare sectors to address concerns about the lack of consistency in the way HRD is defined and methods for measuring HR status. Results This publication provides findings from the group’s discussions that identified opportunities to align the definition of HRD and the parameters that contribute to the determination of HR status. The consortium proposed recommendations and best practices to benefit the broader cancer community. Conclusion Overall, this publication provides additional perspectives for scientist, physician, laboratory, and patient communities to contextualize the definition of HRD and various platforms that are used to measure HRD in tumors.
Invasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC cell model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy.
In nontransformed bovine mammary epithelial cells, the intrinsic apoptosis inducer anisomycin (ANS) induces IGFBP-3 expression and nuclear localization and knockdown of IGFBP-3 attenuates ANS-induced apoptosis. Others have shown in prostate cancer cells that exogenous IGFBP-3 induces apoptosis by facilitating nuclear export of the orphan nuclear receptor Nur77 and its binding partner, retinoid X receptor-α (RXRα). The goal of the present work was to determine whether endogenous IGFBP-3 plays a role in ANS-induced apoptosis by facilitating nuclear transport of Nur77 and/or RXRα in nontransformed cells. Knockdown of Nur77 with siRNA decreased ANS-induced cleavage of caspase-3 and -7 and their downstream target, PARP, indicating a role for Nur77 in ANS-induced apoptosis. In cells transfected with IGFBP-3, IGFBP-3 associated with RXRα but not Nur77 under basal conditions, however, IGFBP-3 co-precipitated with phosphorylated forms of both proteins in ANS-treated cells. Indirect immunofluorescence and cell fractionation techniques showed that ANS induced phosphorylation and transport of Nur77 from the nucleus to the cytoplasm and these effects were attenuated by knockdown of IGFBP-3. These data suggest that endogenous IGFBP-3 plays a role in intrinsic apoptosis by facilitating phosphorylation and nuclear export of Nur77 to the cytoplasm where it exerts its apoptotic effect. Whether this mechanism involves a physical association between endogenous IGFBP-3 and Nur77 or RXRα remains to be determined.
BackgroundResistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a significant clinical problem. Riluzole is FDA-approved for the treatment of amyotrophic lateral sclerosis. A benzothiazole-based glutamate release inhibitor with several context-dependent mechanism(s) of action, Riluzole has shown anti-tumor activity in multiple malignancies, including melanoma, glioblastoma, and breast cancer. In several (but not all) of these studies, Riluzole-mediated growth inhibition is attributed to increased expression of metabotropic glutamate receptors (mGluRs, GRMs). We recently reported that acquisition of Tamoxifen resistance in a cellular model of invasive lobular breast cancer is accompanied by the upregulation of GRM mRNA expression and growth inhibition by Riluzole.MethodsIn the current study, we tested the ability of Riluzole to reduce cell growth, alone and in combination with endocrine therapy, in a diverse set of ER+ invasive ductal and lobular breast cancer-derived cell lines, primary breast tumor explant cultures, and the estrogen-independent, ESR1-mutated invasive lobular breast cancer patient-derived xenograft model HCI-013EI.ResultsSingle-agent Riluzole suppressed the growth of ER+ invasive ductal and lobular breast cancer cell lines in vitro, inducing a histologic subtype-associated cell cycle arrest (G0-G1 for ductal, G2-M for lobular). In an invasive lobular, endocrine resistant model, Riluzole induced apoptosis and reduced phosphorylation of multiple pro-survival signaling molecules, including Akt/mTOR, CREB, and Src/Fak family kinases. Riluzole in combination with either Fulvestrant or 4-hydroxytamoxifen additively or synergistically suppressed ER+ breast cancer cell growth in vitro. The combination of Riluzole plus Fulvestrant significantly reduced proliferation in primary breast tumor explant cultures, and inhibited HCI-013EI xenograft growth in vivo significantly earlier than Fulvestrant alone.ConclusionsThese findings suggest Riluzole combined with endocrine therapy may offer therapeutic benefit in diverse ER+ breast cancers, including lobular breast cancer.
To influence energy homeostasis and reproduction, 17β-estradiol (E2) controls the arcuate nucleus (ARC) through multiple receptor-mediated mechanisms, but primarily via estrogen receptor (ER) α, which signals through both estrogen response element (ERE)-dependent and -independent mechanisms. To determine ERα-mediated, ERE-dependent, and ERE-independent E2 signaling in the ARC, we examined the differential regulation of the mouse arcuate transcriptome by E2 using three mice genotypes: (1) wild-type, (2) ERα knock-in/knockout (ERE-independent mechanisms), and (3) total ERα knockout (ERα-independent mechanisms). Females were ovariectomized and injected with oil or E2, and RNA sequencing on the ARC was used to identify E2-regulated genes in each genotype. Our results show that E2 regulates numerous genes involved in cell signaling, cytoskeleton structure, inflammation, neurotransmission, neuropeptide production, and transcription. Furthermore, ERE-independent signaling regulates ARC genes expressed in kisspeptin neurons and transcription factors that control the hypothalamic/pituitary/gonadal axis. Interestingly, a few genes involved in mitochondrial oxidative respiration were regulated by E2 through ERα-independent signaling. A comparison within oil- and E2-treated females across the three genotypes suggests that genes involved in cell growth and proliferation, extracellular matrices, neuropeptides, receptors, and transcription are differentially expressed across the genotypes. Comparing with previously published chromatin immunoprecipitation sequencing analysis, we found that ERE-independent regulation in the ARC is mainly mediated by tethering of ERα, which is consistent with previous findings. We conclude that the mouse arcuate estrogen-regulated transcriptome is regulated by multiple receptor-mediated mechanisms to modulate the central control of energy homeostasis and reproduction, including novel E2-responsive pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.