Here we report that synaptic and extrasynaptic NMDA (N-methyl-D-aspartate) receptors have opposite effects on CREB (cAMP response element binding protein) function, gene regulation and neuron survival. Calcium entry through synaptic NMDA receptors induced CREB activity and brain-derived neurotrophic factor (BDNF) gene expression as strongly as did stimulation of L-type calcium channels. In contrast, calcium entry through extrasynaptic NMDA receptors, triggered by bath glutamate exposure or hypoxic/ischemic conditions, activated a general and dominant CREB shut-off pathway that blocked induction of BDNF expression. Synaptic NMDA receptors have anti-apoptotic activity, whereas stimulation of extrasynaptic NMDA receptors caused loss of mitochondrial membrane potential (an early marker for glutamate-induced neuronal damage) and cell death. Specific blockade of extrasynaptic NMDA receptors may effectively prevent neuron loss following stroke and other neuropathological conditions associated with glutamate toxicity.
There is a long-standing paradox that NMDA (N-methyl-D-aspartate) receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation of synaptic NMDARs, acting primarily through nuclear Ca(2+) signalling, leads to the build-up of a neuroprotective 'shield', whereas stimulation of extrasynaptic NMDARs promotes cell death. These differences result from the activation of distinct genomic programmes and from opposing actions on intracellular signalling pathways. Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington's disease, and could be a common theme in the aetiology of neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling.
Calcium ions (Ca2+) act as an intracellular second messenger and can enter neurons through various ion channels. Influx of Ca2+ through distinct types of Ca2+ channels may differentially activate biochemical processes. N-Methyl-D-aspartate (NMDA) receptors and L-type Ca2+ channels, two major sites of Ca2+ entry into hippocampal neurons, were found to transmit signals to the nucleus and regulated gene transcription through two distinct Ca2+ signaling pathways. Activation of the multifunctional Ca(2+)-calmodulin-dependent protein kinase (CaM kinase) was evoked by stimulation of either NMDA receptors or L-type Ca2+ channels; however, activation of CaM kinase appeared to be critical only for propagating the L-type Ca2+ channel signal to the nucleus. Also, the NMDA receptor and L-type Ca2+ channel pathways activated transcription by means of different cis-acting regulatory elements in the c-fos promoter. These results indicate that Ca2+, depending on its mode of entry into neurons, can activate two distinct signaling pathways. Differential signal processing may provide a mechanism by which Ca2+ controls diverse cellular functions.
Information storage in the nervous system requires transcription triggered by synaptically evoked calcium signals. It has been suggested that translocation of calmodulin into the nucleus, initiated by submembranous calcium transients, relays synaptic signals to CREB. Here we show that in hippocampal neurons, signaling to CREB can be activated by nuclear calcium alone and does not require import of cytoplasmic proteins into the nucleus. The nucleus is particularly suited to integrate neuronal firing patterns, and specifies the transcriptional outputs through a burst frequency-to-nuclear calcium amplitude conversion. Calcium release from intracellular stores promotes calcium wave propagation into the nucleus, which is critical for CREB-mediated transcription by synaptic NMDA receptors. Pharmacological or genetic modulation of nuclear calcium may directly affect transcription-dependent memory and cognitive functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.