Fiber metal laminates (FML) are composite structures fabricated by combining two layers of surface material with core material. The outer surface of FML used in this composite is Aluminum with Al 1100 type. The FML core material uses carbon fiber. The fabrication process of the composites utilizes vacuum infusion method, in which the resin is infused into the mold with vacuum condition. Bonds between the core and the surface layers are the variables affecting the strength of FML. In this research, the method used to increase the bonds between layers in FML was mechanical method, it's called mechanical bonding. This method involved providing roughness (Ra) on aluminum surface using sand blasting process to produce different roughness variables, with roughness value of 1,68 μm; 1,78 μm; 1,93 μm; 2,128 μm and 2,887 μm. The aim of this study was to examine the impact of aluminum surface roughness to tensile strength of fiber metal laminates composites. The highest tensile strength of FML was obtained at 2,887 μm with a value of 367 MPa.
Fiber Metal Laminates (FML) is a classification of metallic materials consisting of several thin layers of metal combined with composite materials. The constraint of FML is the weak bond between the layer material and the core composite. The weak bond between the layer material and the core composite can be influenced by several things, including the absence of an interlock system between the layer material and the core composite so that the strength of the FML composite decreases. In this study, a study was conducted on the shear strength of FML composites using the independent variables of surface roughness and fiber angle orientation. The highest shear strength in FML composite with fiber angle orientation of 45/45° and with a surface roughness value of 2.128 m with a shear strength value of 2.7 MPa
In a power plant unit whose main fuel is coal, there is generally use a belt conveyor installation. This conveyor belt serves to supply coal from the crusher unit to the combustion chamber of the power generation unit. In this study, we discuss a case where the installation of a belt conveyor which was initially only one line was then made a new branch that supplies coal to other power generating units. Equitable capacity distribution and continuity of coal distribution are the main focus of this study. Therefore, a design of automatic control system of coal flow divider on belt conveyor installation was designed. The working principle of this coal flow splitting system is to control the movement of the straight blade plough that directs the flow of coal to each unit at the certain time and continuously. Straight blade plough in the form of steel metal plate with a thickness of about 10 millimeters in which one end is connected to the end of the pneumatic cylinder. Automatic control system of coal flow divider in belt conveyor installation designed using CX-Programmer and CX-Designer applications. CX-Programmer serves to create automatic control logic concepts. While the CX-designer functions to create a Human Machine Interface (HMI), making it easier for operators to control the course of the coal supply process. The results of this study are in the form of control logic lines that can be applied to Programmable Logic Control (PLC) device and Human Machine Interface (HMI) equipment.
Almost of kids in the world still bring a lunch box and a bottle of water in their bag when their go to school. His mother always prepares a lunch box complete with a bottle of drinking water, hoping that his son can enjoy his favorite lunch and avoid starvation. Sometimes the mother is very worried when the lunch box has been brought by the child but the water bottle is left behind. Then the mother was willing to take her child's water bottle to her school. This is certainly not expected by either the mother or the child. As a form of concern for the author to this problem, the author proposes a lunch box design with a lunch box lid that also functions as a drinking water bottle. The idea of this design proposal is ones grab, both are food & drink in your hand. The goal is how to make a kids can grab their food and drink easily and practice. So it is proposed to modify a top cover of common foodpack to become a drink bag. The design process begins with analyzing market needs, making sketches, creating 3D design models using the Autodesk Inventor CAD application, material selection, and product evaluation.
Brush-less Direct Current (BLDC) motor drive systems are widely used in electric vehicles (EV). However, most EV control strategies only focus on BLDC motors without considering changes in different driving conditions. This paper proposes an intelligent control strategy based on an intelligent neural network that can change control parameters based on changing driving conditions. This system has the ability to self-learning and adapt based on driving conditions. The simulation is carried out using the Electric Vehicle Drive Train model and run on the MATLAB-SIMULINK platform. The simulation results show that the smart control strategy designed shows very good efficiency with minimal errors and quickly adapts to different driving conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.