In the wireless communication system, to transfer the data without loss and to reduce size of antenna, modulation is the most important technique. Phase-shift keying (PSK) is a modulation technique in which the phase of a transmitted signal varies to convey information. Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) are implemented in Field Programmable Gate Array (FPGA). The proposed designs are aimed for study purposes. These digital modulators are designed using Verilog Hardware Description Language (HDL). Cadence's NC-Sim simulation software is used to check the functionality of designs. Xilinx's integrated software Environment (ISE) used for FPGA design implementation.
Estimation of satellite three-axis attitude using only one sensor data presents an interesting estimation problem. A flexible and mathematically effective filter for solving the satellite three-axis attitude estimation problem using two-axis magnetometer would be a challenging option for space missions which are suffering from other attitude sensors failure. Mostly, magnetometers are employed with other attitude sensors to resolve attitude estimation. However, by designing a computationally efficient discrete Kalman filter, full attitude estimation can profit by only two-axis magnetometer observations. The method suggested solves the problem of satellite attitude estimation using linear Kalman filter (LKF). Firstly, all models are generated and then the designed scenario is developed and evaluated with simulation results. The filter can achieve 10e-3 degree attitude accuracy or better on all three axes.
This paper presents an efficient model for estimation of soil electric resistivity with depth and layer thickness in a multilayer earth structure. This model is the improvement of conventional two-layer earth model including Wenner resistivity formulations with boundary conditions. Two-layer soil model shows the limitations in specific soil characterizations of different layers with the interrelationships between soil apparent electrical resistivity (ρ) and several soil physical or chemical properties. In the multilayer soil model, the soil resistivity and electric potential at any points in multilayer anisotropic soil medium are expressed according to the variation of electric field intensity for geotechnical investigations. For most soils with varying layers, multilayer soil resistivity profile is therefore more suitable to get soil type, bulk density of compacted soil and to detect anomalous materials in soil. A boundary element formulation is implemented to show the multilayer soil model with boundary conditions in soil resistivity estimations. Numerical results of soil resistivity ratio and potential differences for different layers are presented to illustrate the application, accuracy, and efficiency of the proposed model. The nobility of the research is obtaining multilayer soil characterizations through soil electric properties in near surface soil profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.