Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Doppelt dotierte Quantenpunkte (QDs) mit hoch effizienter Weißlichtemission (17 %) wurden durch eine einfache Heißinjektionsmethode synthetisiert (siehe Bild). Die Erzeugung der Weißlichtemission erforderte eine sorgfältige Anpassung der Synthesestrategie für die Codotierung des Wirtmaterials – ZnSe‐QDs – mit Mn und Cu.
High quality white light generation with high colour rendering index (CRI) was achieved by integrating a cross-linkable azide functionalized polyfluorene derivative, namely poly[(9,9-dihexylfluorene)-co-alt-(9,9-bis(6-azidohexyl) fluorene)] (PFA), as a down-converting fluorescent material on the inorganic n-UV InGaN/GaN LED platform. For comparison, two other polyfluorene based polymers, namely poly[(9,9-dihexylfluorene)-co-alt-(9,9-bis(6-bromohexyl) fluorene)] (PFB) and poly[9,9-dihexyl-9H-fluorene] (PF), were tested for white light generation. While PFA and PF both led to white light generation, PFB fell out of the white region on the chromaticity diagram. Compared to PFA, both of the control groups (PF and PFB) exhibited much lower CRI. To gain a better insight into the mechanisms playing a key role for the generation of such high quality white light in PFA, all of these polymers were further subjected to a series of experiments such as controlled exposure to heat at 220 °C for 2 h under Ar and in air. The polymers PFA and PFB, which include cross-linkable groups, produced broad emission spectra in the region of 430-650 nm upon annealing in the absence of oxygen under Ar atmosphere while almost no change was observed in the emission spectrum of PF without any cross-linkable groups. PFA undergoes cross-linking through the decomposition of azide leading to reactive nitrene species, whereas in PFB cross-linking probably occurs via debromination. This result clearly proved that the broadening can not be attributed only to photo or thermal oxidation, but it is also due to cross-linking. PFA was also exposed to n-UV light from the InGaN/GaN LED to investigate its photostability. In these experiments, the spectral changes in absorbance and emission properties and thermal transitions of these polymers were monitored by FT-IR, UV-Vis and fluorescent spectrometry, and differential scanning calorimetry (DSC). These experiments indicated that PFA provides high quality white light opportunely via cross-linking and remains stable once cross-linking is formed in a solid film. © 2008 The Royal Society of Chemistry
An important goal of self-assembly research is to develop a general methodology applicable to almost any material, from the smallest to the largest scales, whereby qualitatively identical results are obtained independently of initial conditions, size, shape and function of the constituents. Here, we introduce a dissipative self-assembly methodology demonstrated on a diverse spectrum of materials, from simple, passive, identical quantum dots (a few hundred atoms) that experience extreme Brownian motion, to complex, active, non-identical human cells (~10 17 atoms) with sophisticated internal dynamics. Autocatalytic growth curves of the self-assembled aggregates are shown to scale identically, and interface fluctuations of growing aggregates obey the universal Tracy-Widom law. Example applications for nanoscience and biotechnology are further provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.