The DEK oncoprotein regulates cellular chromatin function via a number of protein–protein interactions. However, the biological relevance of its unique pseudo‐SAP/SAP‐box domain, which transmits DNA modulating activities in vitro, remains largely speculative. As hypothesis‐driven mutations failed to yield DNA‐binding null (DBN) mutants, we combined random mutagenesis with the Bacterial Growth Inhibition Screen (BGIS) to overcome this bottleneck. Re‐expression of a DEK‐DBN mutant in newly established human DEK knockout cells failed to reduce the increase in nuclear size as compared to wild type, indicating roles for DEK–DNA interactions in cellular chromatin organization. Our results extend the functional roles of DEK in metazoan chromatin and highlight the predictive ability of recombinant protein toxicity in E. coli for unbiased studies of eukaryotic DNA modulating protein domains.
Nanoparticles degradable upon external stimuli combine pharmacokinetic features of both small molecules as well as large nanoparticles. However, despite promising preclinical results, several redox responsive disulphide-linked nanoparticles failed in clinical translation, mainly due to their unexpected in vivo behavior. Glutathione (GSH) is one of the most evaluated antioxidants responsible for disulfide degradation. Herein, the impact of GSH on the in vivo behavior of redox-sensitive nanogels under physiological and modulated conditions is investigated. Labelling of nanogels with a DNA-intercalating dye and a radioisotope allows visualization of the redox responsiveness at the cellular and the systemic levels, respectively. In vitro, efficient cleavage of disulphide bonds of nanogels is achieved by manipulation of intracellular GSH concentration. While in vivo, the redox-sensitive nanogels undergo, to a certain extent, premature degradation in circulation leading to rapid renal elimination. This instability is modulated by transient inhibition of GSH synthesis with buthioninsulfoximin. Altered GSH concentration significantly changes the in vivo pharmacokinetics. Lower GSH results in higher elimination half-life and altered biodistribution of the nanogels with a different metabolite profile. These data provide strong evidence that decreased nanogel degradation in blood circulation can limit the risk of premature drug release and enhance circulation half-life of the nanogel.
Despite profound advances in treatment approaches, gliomas remain associated with very poor prognoses. The residual cells after incomplete resection often migrate and proliferate giving a seed for highly resistant gliomas. The efficacy of chemotherapeutic drugs is often strongly limited by their poor selectivity and the blood brain barrier (BBB). Therefore, the development of therapeutic carrier systems for efficient transport across the BBB and selective delivery to tumor cells remains one of the most complex problems facing molecular medicine and nano-biotechnology. To address this challenge, a stimuli sensitive nanogel is synthesized using pre-polymer approach for the effective delivery of nano-irradiation. The nanogels are cross-linked via matrix metalloproteinase (MMP-2,9) substrate and armed with Auger electron emitting drug 5-[ 125 I]Iodo-4"-thio-2"-deoxyuridine ([ 125 I]ITdU) which after release can be incorporated into the DNA of tumor cells. Functionalization with diphtheria toxin receptor ligand allows nanogel transcytosis across the BBB at tumor site. Functionalized nanogels efficiently and increasingly explore transcytosis via BBB co-cultured with glioblastoma cells. The subsequent nanogel degradation correlates with up-regulated MMP2/9. Released [ 125 I]ITdU follows the thymidine salvage pathway ending in its incorporation into the DNA of tumor cells. With this concept, a highly efficient strategy for intracellular delivery of radiopharmaceuticals across the challenging BBB is presented.
In two proof‐of‐concept studies, we established and validated the Bacterial Growth Inhibition Screen (BGIS), which explores recombinant protein toxicity in Escherichia coli as a largely overlooked and alternative means for basic characterization of functional eukaryotic protein domains. By applying BGIS, we identified an unrecognized RNA‐interacting domain in the DEK oncoprotein (this study) and successfully combined BGIS with random mutagenesis as a screening tool for loss‐of‐function mutants of the DNA modulating domain of DEK [1]. Collectively, our findings shed new light on the phenomenon of recombinant protein toxicity in E. coli. Given the easy and rapid implementation and wide applicability, BGIS will extend the repertoire of basic methods for the identification, analysis and unbiased manipulation of proteins.
Blood–Brain Barrier
In article number 2100812 by Smriti Singh, Agnieszka Morgenroth, and co‐workers, Matrix metalloprotease (MMP) sensitive nanogels are synthesized for effective delivery of a radiopharmaceutical ([125I]ITdU) across the blood‐brain barrier (BBB). The nanogels show efficient transcytosis across the in vitro model of BBB co‐cultured with glioblastoma cells. Once transcytosed, nanogels degrade in an up‐regulated MMP2/9 environment of glioblastoma and release the radiopharmaceutical, which gets incorporated into the DNA of tumor cells by thymidine salvage pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.