The year 2019 has seen an emergence of the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease of 2019 (COVID-19). Since the onset of the pandemic, biological and interdisciplinary research is being carried out across the world at a rapid pace to beat the pandemic. There is an increased need to comprehensively understand various aspects of the virus from detection to treatment options including drugs and vaccines for effective global management of the disease. In this review, we summarize the salient findings pertaining to SARS-CoV-2 biology, including symptoms, hosts, epidemiology, SARS-CoV-2 genome, and its emerging variants, viral diagnostics, host-pathogen interactions, alternative antiviral strategies and application of machine learning heuristics and artificial intelligence for effective management of COVID-19 and future pandemics.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease2019 (COVID-19). SARS-CoV-2 is known for its high pathogenicity and transmission due to thepresence of polybasic cleavage sites. No specific drug is available for the treatment. To identifythe potential inhibitors, we have performed molecular docking against the SARS-CoV-2 mainprotease (6Y84) with fifteen important natural xanthone compounds. The docking results showedall the compounds exhibited good binding energies and interactions with the main protease. Thevalidation of representative docking complexes through molecular dynamics simulations showedthat xanthones binds with a higher binding affinity and lower free energy than the standardligand with Brasixanthone C and Brasixanthone B on 50 ns. Natural xanthone compounds havealso passed the Absorption, Distribution, Metabolism, and Excretion (ADME) property criteriaas well as Lipinski’s rule of five. The present integrated molecular docking and dynamicssimulations study unveil the use of xanthones as potential antiviral agents against SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease2019 (COVID-19). SARS-CoV-2 is known for its high pathogenicity and transmission due to thepresence of polybasic cleavage sites. No specific drug is available for the treatment. To identifythe potential inhibitors, we have performed molecular docking against the SARS-CoV-2 mainprotease (6Y84) with fifteen important natural xanthone compounds. The docking results showedall the compounds exhibited good binding energies and interactions with the main protease. Thevalidation of representative docking complexes through molecular dynamics simulations showedthat xanthones binds with a higher binding affinity and lower free energy than the standardligand with Brasixanthone C and Brasixanthone B on 50 ns. Natural xanthone compounds havealso passed the Absorption, Distribution, Metabolism, and Excretion (ADME) property criteriaas well as Lipinski’s rule of five. The present integrated molecular docking and dynamicssimulations study unveil the use of xanthones as potential antiviral agents against SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.