Instead of only focusing on the targeted drug delivery system, researchers have a great interest in developing peptide-based therapies for the procurement of numerous class of diseases. The main idea behind this is to anchor the properties of the receptor to design peptide-based therapeutics. As these macromolecules have distinct physicochemical properties over small molecules, it becomes an obligatory field for the treatment of diseases. For this, various in silico models have been developed to speculate the proteins by virtue of the application of machine learning and artificial intelligence. By analysing the properties and structural alert of toxic proteins, researchers aim to dissert some of the mechanisms of protein toxicity from which therapeutic insights may be drawn. Numerous models already exist worldwide emphasizing themselves as leading paramount for toxicity prediction in protein macromolecules. Few of them comparatively compete with the other predictive protein toxicity models and convincingly give a high-performance result in terms of accuracy. But their foundation is quite ambiguous, and varying approaches are found at the level of toxicoproteomic data utilization while building a machine learning model. In this review work, we present the contribution of artificial intelligence and machine learning approaches in prediction of protein toxicity using proteomics data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.