This paper investigates the efficiency of powder catchment in blown powder laser cladding (a directed energy deposition technique). A comparison is made between standard “track by overlapping track” cladding (“AAA” cladding) and “ABA” cladding, where the gaps left between an initial set of widely spaced tracks (“A” tracks), are filled in by subsequent “B” tracks. In both these techniques, the melt pool surface is the collection area for the cladding powder, and the shape of this pool can be affected by several parameters including cladding speed, intertrack spacing, and type of cladding technique. The results presented here are derived from of an analysis of high-speed videos taken during processing and cross sections of the resultant clad tracks. The results show that the first track in AAA cladding has a different melt pool shape to subsequent tracks, and that the asymmetry of the subsequent track melt pools results in a reduction in the powder catchment efficiency. In contrast to this, the geometry of the “B” track melt pools between their adjacent “A” tracks results in an enhanced powder catchment efficiency.
Purpose
This paper aims to gain an understanding of the behaviour of iron ore when melted by a laser beam in a continuous manner. This fundamental knowledge is essential to further develop additive manufacturing routes such as production of low cost parts and in-situ reduction of the ore during processing.
Design/methodology/approach
Blown powder directed energy deposition was used as the processing method. The process was observed through high-speed imaging, and computed tomography was used to analyse the specimens.
Findings
The experimental trials give preliminary results showing potential for the processability of iron ore for additive manufacturing. A large and stable melt pool is formed in spite of the inhomogeneous material used. Single and multilayer tracks could be deposited. Although smooth and even on the surface, the single layer tracks displayed porosity. In case of multilayered tracks, delamination from the substrate material and deformation can be seen. High-speed videos of the process reveal various process phenomena such as melting of ore powder during feeding, cloud formation, melt pool size, melt flow and spatter formation.
Originality/value
Very little literature is available that studies the possible use of ore in additive manufacturing. Although the process studied here is not industrially useable as is, it is a step towards processing cheap unprocessed material with a laser beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.