BACKGROUND AND PURPOSEPrevious studies have linked a reduction in pH in airway, caused by either environmental factors, microaspiration of gastric acid or inflammation, with airway smooth muscle (ASM) contraction and increased airway resistance. Neural mechanisms have been shown to mediate airway contraction in response to reductions in airway pH to < 6.5; whether reduced extracellular pH (pHo) has direct effects on ASM is unknown. EXPERIMENTAL APPROACHIntracellular signalling events stimulated by reduced pHo in human cultured ASM cells were examined by immunoblotting, phosphoinositide hydrolysis and calcium mobilization assays. ASM cell contractile state was examined using magnetic twisting cytometry. The expression of putative proton-sensing GPCRs in ASM was assessed by real-time PCR. The role of ovarian cancer G protein-coupled receptor 1 (OGR1 or GPR68) in acid-induced ASM signalling and contraction was assessed in cultures subjected to siRNA-mediated OGR1 knockdown. KEY RESULTSASM cells responded to incremental reductions in pHo (from pH 8.0 to pH 6.8) by activating multiple signalling pathways, involving p42/p44, PKB, PKA and calcium mobilization. Coincidently, ASM cells contracted in response to decreased pHo with similar 'dose'-dependence. Real-time PCR suggested OGR1 was the only proton-sensing GPCR expressed in ASM cells. Both acid-induced signalling (with the exception of PKB activation) and contraction were significantly attenuated by knockdown of OGR1. CONCLUSIONS AND IMPLICATIONSThese studies reveal OGR1 to be a physiologically relevant GPCR in ASM cells, capable of pleiotropic signalling and mediating contraction in response to small reductions in extracellular pH. Accordingly, ASM OGR1 may contribute to asthma pathology and represent a therapeutic target in obstructive lung diseases.
Inhaled β-agonists are effective airway smooth muscle (ASM)-relaxing agents that help reverse bronchoconstriction in asthma, but their ability to affect the aberrant ASM growth that also occurs with asthma is poorly understood. β-Agonists exhibit PKA-dependent antimitogenic effects in several cell types. However, recent studies suggest that Epac, and not PKA, mediates the antimitogenic effect of cAMP in both ASM and fibroblasts. This study aims to clarify the role of PKA in mediating the effect of G(s)-coupled receptors on human ASM growth. Pretreatment of ASM cultures with β-agonists albuterol, isoproterenol, or salmeterol (100 nM to 10 μM) caused a significant (∼ 25-30%) inhibition of EGF-stimulated ASM thymidine incorporation and cell proliferation, whereas a much greater inhibition was observed from pretreatment with PGE(2) (75-80%). However, all agents were ineffective in cells expressing GFP chimeras of either PKI (a PKA inhibitor) or a mutant PKA regulatory subunit relative to the control cells expressing GFP. The antimitogenic efficacy of PGE(2) in inhibiting control cultures was associated with greater ability to stimulate sustained PKA activation and greater inhibition of late-phase promitogenic p42/p44 and PI3K activities. These findings suggest that therapeutic approaches enabling superior PKA activation in ASM will be most efficacious in deterring ASM growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.