Lead Zirconate Titanate (PZT) sensors have become popular in structural health monitoring (SHM) using the electromechanical impedance (EMI) technique for damage identification. The vibrations generated during the casting process in concrete structures substantially impact the conductance signature’s (real part of admittance) magnitude and sensitivity. The concept of smart sensing units (SSU) is presented, composed of a PZT patch, an adhesive layer, and a steel plate. It is embedded in the concrete structure to study the impact of damage since it has high sensitivity to detect any structural changes, resulting in a high electrical conductance signature. The conductance signatures are obtained from the EMI technique at the damage state in the 10–500 kHz high-frequency range. The wave propagation technique proposes implementing the novel embedded SSUs to detect damage in the host structure. The numerical simulation is carried out with COMSOL multiphysics, and the received voltage signal is compared between the damaged and undamaged concrete beam with the applied actuation signal. A five-cycle sine burst modulated by a Hanning window is employed as the transient excitation signal. For numerical investigation, six cases are explored to better understand how the wave travels when a structural discontinuity is accounted for. The changes in the received signal during actuator–receiver mode in the damage state of the host structure are quantified using time of flight (TOF). Furthermore, the numerical studies are carried out by combining the EMI-WP technique, which implies synchronous activation of EMI-based measurements and wave stimulation. The fundamental idea is to implement EMI-WP to improve the effectiveness of SSU patches in detecting both near-field and far-field damage in structures. One SSU is used as an EMI admittance sensor for local damage identification. Meanwhile, the same EMI admittance sensor is used to acquire elastic waves generated by another SSU to monitor damages outside the EMI admittance sensor’s sensing area. Finally, the experimental validation is carried out to verify the proposed methodology. The results show that combining both techniques is an effective SHM method for detecting damage in concrete structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.