Objective. Optogenetics has emerged as a promising technique for neural prosthetics, especially retinal prostheses, with unprecedented spatiotemporal resolution. Newly discovered opsins with high light sensitivity and fast temporal kinetics can provide sufficient temporal resolution at safe light powers and overcome the limitations of presently used opsins. It is also important to formulate accurate mathematical models for optogenetic retinal prostheses, which can facilitate optimization of photostimulation factors to improve the performance. Approach. A detailed theoretical analysis of optogenetic excitation of model retinal ganglion neurons (RGNs) and hippocampal neurons expressed with already tested opsins for retinal prostheses, namely, ChR2, ReaChR and ChrimsonR, and also with recently discovered potent opsins CsChrimson, bReaChES and ChRmine, was carried out. Main results. Under continuous illumination, ChRmine-expressing RGNs begin to respond at very low irradiances ∼10−4 mW mm−2, and evoke firing upto ∼280 Hz, highest among other opsin-expressing RGNs, at 10−2 mW mm−2. Under pulsed illumination at randomized photon fluxes, ChRmine-expressing RGNs respond to changes in pulse to pulse irradiances upto four logs, although very bright pulses >1014 photons mm−2 s−1 block firing in these neurons. The minimum irradiance threshold for ChRmine-expressing RGNs is lower by two orders of magnitude, whereas, the first spike latency in ChRmine-expressing RGNs is shorter by an order of magnitude, alongwith stable latency of subsequest spikes compared to others. Further, a good set of photostimulation parameters were determined to achieve high-frequency control with single spike resolution at minimal power. Although ChrimsonR enables spiking upto 100 Hz in RGNs, it requires very high irradiances. ChRmine provides control at light powers that are two orders of magnitude smaller than that required with experimentally studied opsins, while maintaining single spike temporal resolution upto 40 Hz. Significance. The present study highlights the importance of ChRmine as a potential opsin for optogenetic retinal prostheses.
A detailed theoretical analysis and optimization of high-fidelity, high-frequency firing of the red-shifted very-fast-Chrimson (vf-Chrimson) expressing neurons is presented. A four-state model for vf-Chrimson photocycle has been formulated and incorporated in Hodgkin-Huxley and Wang-Buzsaki spiking neuron circuit models. The effect of various parameters that include irradiance, pulse width, frequency, expression level, and membrane capacitance has been studied in detail. Theoretical simulations are in excellent agreement with recently reported experimental results. The analysis and optimization bring out additional interesting features. A minimal pulse width of 1.7 ms at 23 mW∕mm 2 induces a peak photocurrent of 1250 pA. Optimal irradiance (0.1 mW∕mm 2) and pulse width (50 μs) to trigger action potential have been determined. At frequencies beyond 200 Hz, higher values of expression level and irradiance result in spike failure. Singlet and doublet spiking fidelity can be maintained up to 400 and 150 Hz, respectively. The combination of expression level and membrane capacitance is a crucial factor to achieve high-frequency firing above 500 Hz. Its optimization enables 100% spike probability of up to 1 kHz. The study is useful in designing new high-frequency optogenetic neural spiking experiments with desired spatiotemporal resolution, by providing insights into the temporal spike coding, plasticity, and curing neurodegenerative diseases.
The advancement in the development of computer technology has led to the idea of human computer interaction. Research experiments in human computer interaction involves the young age group of people that are educated and technically knowledgeable. This paper focuses on the mental model in Human Computer Interaction. There are various approaches of this review paper and one of them is highlighting current approach, results and the trends in the human computer interaction and the second approach is to find out the research that have been invented a long time before and are currently lagging behind. This paper also focuses on the emotional intelligence of a user to become more user like, fidelity prototyping. The development and design of an automated system that perform such task is still being accomplished.
A detailed theoretical analysis of low-power, high-frequency and temporally precise optogenetic inhibition of neuronal spiking, with red-shifted opsins namely, NpHR, eNpHR3.0 and Jaws, has been presented. An accurate model for inhibition of spiking in these opsins expressed hippocampal neurons that includes the important rebound activity of chloride ions across the membrane has been formulated. The effect of various parameters including irradiance, pulse width, frequency, opsinexpression density and chloride concentration has been studied in detail. Theoretical simulations are in very good agreement with reported experimental results. The chloride concentration gradient directly affects the photocurrent and inhibition capacity in all three variants. eNpHR3.0 shows smallest inhibitory post-synaptic potential plateau at higher frequencies. The time delay between light stimulus and target spike is crucial to minimize irradiance and expression density thresholds for suppressing individual spike. Good practical values of photostimulation parameters have been obtained empirically for peak photocurrent, time delay and 100% spiking inhibition, at continuous and pulsed illumination. Under continuous illumination, complete inhibition of neural activity in Jaws-expressing neurons takes place at minimum irradiance of 0.2 mW mm −2 and expression density of 0.2 mS cm −2 , whereas for pulsed stimulation, it is at minimum irradiance of 0.6 mW mm −2 and 5 ms pulse width, at 10 Hz. It is shown that Jaws and eNpHR3.0 are able to invoke single spike precise inhibition up to 160 and 200 Hz, respectively. The study is useful in designing new experiments, understanding temporal spike coding and bidirectional control, and curing neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.