We present an unsupervised learning method for dense crowd count estimation. Marred by large variability in appearance of people and extreme overlap in crowds, enumerating people proves to be a difficult task even for humans. This implies creating large-scale annotated crowd data is expensive and directly takes a toll on the performance of existing CNN based counting models on account of small datasets. Motivated by these challenges, we develop Grid Winner-Take-All (GWTA) autoencoder to learn several layers of useful filters from unlabeled crowd images. Our GWTA approach divides a convolution layer spatially into a grid of cells. Within each cell, only the maximally activated neuron is allowed to update the filter. Almost 99.9% of the parameters of the proposed model are trained without any labeled data while the rest 0.1% are tuned with supervision. The model achieves superior results compared to other unsupervised methods and stays reasonably close to the accuracy of supervised baseline. Furthermore, we present comparisons and analyses regarding the quality of learned features across various models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.