In this paper, a rectifier integrated Luneburg lens is designed at K band for wireless power transfer (WPT) applications. The lens consists of two metallic layers with a gap of 0.3 mm between them and has been made by employing the glide symmetry technique. A flare is tailored to match the outer impedance of the lens to the free space impedance. Five microstrip tapers are used at intervals of 18 0 at the periphery of the lens to collect the energy from it. The rectifying circuits are co-designed and are integrated with these five tapered launchers so as to make the entire structure suitable for capturing the transmitted power from the solar power satellite wirelessly, and to convert it to the equivalent voltage. Finally, all the ports are connected with a common load for DC power combining, and the overall performance of the lens integrated rectifier as an energy harvesting system is reported in terms of its power conversion efficiency (PCE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.