The synthesis of nitrogen-doped single-layer graphene has been achieved on the copper surface by using the nitrogen-containing sole precursor azafullerene. The synthesis process, doping properties, and doping-induced variation of local work function of graphene have been investigated on the atomic scale by combining scanning tunneling microscopy/spectroscopy, X-ray photoelectron spectroscopy measurements, and density functional theory calculations. Most nitrogen dopants are at the edges of graphene islands and the graphene domain boundaries with the pyridinic configuration. Graphitic nitrogen dopants arrange into curved lines within graphene islands after multiple growth cycles, which results from a doping process guided by the edges of graphene islands. The doping-induced variation of local work function of the graphene surface has been measured on the atomic scale by using scanning tunneling spectroscopy measurements. We find that the local work function strongly depends on the atomic bonding configuration and concentration of nitrogen dopants. The local work function decreases for graphitic nitrogen doping but increases for pyridinic nitrogen doping. This work provides new atomic-scale insights into the synthesis of heteroatom-doped graphene from sole precursors as well as the strong correlations between nitrogen doping and the local work function of the graphene layer.
Alkali postdeposition treatments of Cu(In,Ga)Se2 absorbers with KF, RbF, and CsF have led to remarkable efficiency improvements for chalcopyrite thin film solar cells. However, the effect of such treatments on the electronic properties and defect physics of the chalcopyrite absorber surfaces are not yet fully understood. In this work, we use scanning tunneling spectroscopy and X-ray photoelectron spectroscopy to compare the surface defect electronic properties and chemical composition of RbF-treated and nontreated absorbers. We find that the RbF treatment is effective in passivating electronic defect levels at the surface by preventing surface oxidation. Our X-ray photoelectron spectroscopy (XPS) data points to the presence of chemisorbed Rb on the surface with a bonding configuration similar to that of a RbInSe2 bulk compound. Yet, a quantitative analysis indicates Rb coverage in the submonolayer regime, which is likely causing the surface passivation. Furthermore, ab initio calculations confirm that RbF-treated surfaces are less prone to oxidation (in the form of Ga, In, and Se oxides) than bare chalcopyrite surfaces. In addition, elemental diffusion of Rb along with Na, Cu, and Ga is found to occur when the samples are annealed under ultrahigh vacuum conditions. Magnetic sector secondary ion mass spectrometry measurements indicate that there is a homogeneous spatial distribution of Rb on the surface both before and after annealing, albeit with an increased concentration at the surface after heat treatment. Depth-resolved magnetic sector secondary ion mass spectrometry measurements show that Rb diffusion within the bulk occurs predominantly along grain boundaries. Scanning tunneling and XPS measurements after subsequent annealing steps demonstrate that the Rb accumulation at the surface leads to the formation of metallic Rb phases, involving a significant increase of electronic defect levels and/or surface dipole formation. These results strongly suggest a deterioration of the absorber–window interface because of increased recombination losses after the heat-induced diffusion of Rb toward the interface.
Interface engineering is a common strategy for passivating surface defects to attain open circuit voltages (V oc ) in perovskite solar cells (PSCs). In this work, we introduce the concept of polishing a perovskite thin-film surface using a nanosecond (ns) pulsed ultraviolet laser to reduce surface defects, such as dangling bonds, undesirable phases, and suboptimal stoichiometry. A careful control of laser energy and scanning speed improves the photophysical properties of the surface without compromising the thickness. Using laser polishing, a V oc of 1.21 V is achieved for planar PSCs with a triple cation composition, showing an improved perovskite/hole transport interface by mitigating surface recombination losses. We measure an efficiency boost from 18.0% to 19.3% with improved stability of up to 1000 h. The results open the door to a new class of surface modification using lasers for interface passivation in well-controllable, automated, scalable, and solvent-free surface treatments.
Chemically processed methylammonium tin-triiodide (CH3NH3SnI3) films include Sn in different oxidation states, leading to poor stability and low power conversion efficiency of the resulting solar cells (PSCs). The development of absorbers with Sn [2+] only has been identified as one of the critical steps to develop all Sn-based devices. Here, we report on coevaporation of CH3NH3I and SnI2 to obtain absorbers with Sn being only in the preferred oxidation state [+2] as confirmed by X-ray photoelectron spectroscopy. The Sn [4+]-free absorbers exhibit smooth highly crystalline surfaces and photoluminescence measurements corroborating their excellent optoelectronic properties. The films show very good stability under heat and light. Photoluminescence quantum yields up to 4 × 10–3 translate in a quasi Fermi-level splittings exceeding 850 meV under one sun equivalent conditions showing high promise in developing lead-free, high efficiency, and stable PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.