Perfluorooctanesulfonic acid (PFOS) is an emerging environmental organic pollutant that has been widely used in daily life products in the last century. Numerous studies showed that the accumulation of PFOS in human through food chain would lead to various disease. However, there is currently no report about its in situ localization in the tissue. In present study, we aimed to develop a reproductive and less-cost method to quantitatively detect and determine the spatial distribution of PFOS in mouse kidney by matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) with a commercially available matrix. α-Cyano-4-hydroxycinnamic acid (CHCA) matrix was optimized for PFOS detection in MALDI-IMS analysis. Compared to other organic matrices, CHCA used in negative ion mode showed less background interference and enhanced MS signal intensity and high spatial resolution (80 μm) for PFOS analysis. The use of a CHCA matrix with an autospray system led to successful identification of the PFOS ion signals on the perfusion kidney tissue. The detection limit was at the μg/mL level, with direct visualization from a MS image. The developed method with the optimized parameters was successfully employed to obtain the PFOS spatial distribution in the kidney collected from mice after the PFOS exposure for 14 days. PFOS was mainly distributed in the kidney cortex region, which was consistent with the histological analysis results. Taken together, a rapid, economic, and efficient method was developed for PFOS detection by MALDI-IMS using a CHCA matrix. Mapping the distribution of PFOS by MALDI-IMS with a CHCA matrix provides an innovative approach for the analysis of environmental pollutants in animal or human tissues.
Increasing prevalence of childhood obesity poses threats to the global health burden. Because this rising prevalence cannot be fully explained by traditional risk factors such as unhealthy diet and physical inactivity, early-life exposure to endocrine disrupting chemicals (EDCs) is recognized as emerging novel risk factors for childhood obesity. EDCs can disrupt the hormone-mediated metabolic pathways, affect children’s growth and mediate the development of childhood obesity. Many organic pollutants are recently classified to be EDCs. In this review, we summarized the epidemiological and laboratory evidence related to EDCs and childhood obesity, and discussed the possible mechanisms underpinning childhood obesity and early-life exposure to non-persistent organic pollutants (phthalates, bisphenol A, triclosan) and persistent organic pollutants (dichlorodiphenyltrichloroethane, polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances). Understanding the relationship between EDCs and childhood obesity helps to raise public awareness and formulate public health policy to protect the youth from exposure to the harmful effects of EDCs.
Although the in vivo metabolic pathways of scutellarin, a traditional Chinese medicine, has been investigated by different liquid chromatography techniques, study on the distribution and location of scutellarin within organ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.