Power Quality (PQ) improvement in grid-integrated photovoltaic (PV) and wind energy hybrid systems for effective power transfer is presented in this paper. Due to interlinked hybrid renewable energy resources and nonlinear loads, various issues arise which affect the power quality, i.e., voltage sag, harmonic distortion increases, and also reactive power demand. In order to mitigate these issues, flexible alternating current transmission system (FACTS) devices are utilized. In this paper, hysteresis band current controller (HBCC)-based static synchronous compensator (STATCOM) is modeled to reduce PQ problems. HBCC is a robust and simple technique to improve voltage profile, reduce total harmonic distortion (THD) and fulfill the reactive power demand. Two case scenarios of the hybrid system, i.e., (I) grid integrated hybrid system without HBCC (II) grid integrated hybrid system with HBCC, are tested. Results demonstrate that under scenario II, load bus voltage is regulated at 1.0 p.u., THD of system voltage and current is reduced 0.25% and 0.35%, respectively, and reactive power demand of 30 kVAR is fulfilled. The HBCC was designed for reducing THD of the system with the limits specified by standards IEEE 519-1992 STATCOM using hysteresis band current controller to improve power quality in the distribution system which is simulated using MATLAB/SIMULINK. After that, the performance of the system is better in terms of power quality.
With a growing impetus to meet energy demand through decentralized hybrid mini-grids in rural and semi-urban locations in Sub-Saharan Africa (SSA), the need to accurately assess the market drivers, policy requirements and job creation impacts of this energy system typology within this region cannot be ignored. This work provides a techno-economic impact analysis of decentralized hybrid energy systems in selected locations in SSA. To optimally satisfy an electricity demand time-series for a year and minimize all cost components amortized over a period of 20 years, a least-cost modelling approach and tool is applied. An Employment Factor approach was used to calculate the direct employment impacts across the value chain of different hybrid mini-grid types. Additionally, the Leontief Inverse Input-Output model is used to determine the backward linkage economy-wide-jobs (gross jobs) created. The preliminary results show that the "Solar + Wind + Diesel + Battery" hybrid system (SWDB) has the lowest Levelized Cost of Electricity (LCOE), thus it provides the cheapest means of meeting the electricity demand in the modelled regions. However, the highest locally created direct and net employment impact in the model locations is provided by the "Wind + Battery" (WB) system. Two major sectors, manufacturing and agriculture have the largest number of gross jobs in the local economy for all decentralized hybrid systems analysed. This occurs due to higher linkages between these two sectors and the productive energy use in the area. Conversely, despite higher employment impacts obtained for WB, the cost and duration needed for A. Okunlola (21 wind resource mapping and assessment serve as a major bottleneck to WB systems market access in the regions. The results of the sensitivity analysis suggest that by de-risking economic factors, such as discount rates, market access for decentralized renewable energy mini-grids can be improved in SSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.