a b s t r a c tTwo-sided assembly line is a set of sequential workstations where task operations can be performed in two sides of the line. The line is important for large-sized products, such as trucks, buses and cars. In this paper, we proposed a mathematical model for two-sided assembly line type II (TALBP-II) with assignment restrictions. The aim of the model is minimizing the cycle time for a given number of mated-workstations and balancing the workstation simultaneously. The model provides a more realistic situation of the two-sided assembly line problems. Genetic algorithm and iterative first-fit rule are used to solve the problem. The performances of both methods are compared using six numerical examples. Based on the experiments, the iterative first-fit rule can take the advantage of finding the best position over many workstations and the genetic algorithm provides more flexible task assignment and is significantly faster than the iterative first-fit rule.
Terdapat fenomena transportasi online dengan masalah seperti kriminalitas dan penipuan di Indonesia yang memicu pro dan kontra pada pengguna Twitter. Makalah ini bertujuan mengetahui sentimen masyarakat terhadap transportasi online dan membandingkan akurasi SVM dan SVM-PSO dengan nilai parameter default. Solusi yang diusulkan adalah membagi dataset ke dalam data training dan testing, karena beberapa penelitian mengenai optimasi hanya menggunakan satu dataset yang sudah diklasifikasikan. Data penelitian adalah data tweet dengan metode scraping menggunakan Octoparse. Total 1.852 data tweet dari 1/1/2019 hingga 15/10/2019 yang dibagi menjadi data testing 1.130 tweet dan training 722 tweet serta RapidMiner digunakan untuk proses analisis. Analisis sentimen positif menggunakan SVM adalah sebesar 62% dan sentimen negatif sebesar 38%, sedangkan pada SVM-PSO, opini positif sebesar 53% dan negatif 47%. Hasil penelitian menggunakan 10 k-fold CV menghasilkan akurasi pada SVM sebesar 95,46% dan AUC 0,979 (excellent classification), sedangkan pada SVM-PSO sebesar 96,04% dan AUC 0,993 (excellent classification). Hasil menunjukkan bahwa penggunaan data training dan testing dapat dilakukan dan terbukti bahwa SVM-PSO lebih baik daripada SVM biasa, meskipun menggunakan nilai parameter default.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.