Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.
The distribution of picocyanobacteria from two genera, Synechococcus and Prochlorococcus, and picoeukaryotes in surface water (0.5 m) was investigated by flow cytometry in the southeastern coast of Peninsular Malaysia during the Southwest monsoon in August 2014. During the cruise, Synechococcus cells were predominant throughout the study area, contributing as much as 50% to the total picophytoplankton population, whereas picoeukaryotes and Prochlorococcus constituted only 31% and 19% of the population, respectively. Spatially, Synechococcus and picoeukaryotes were more dominant in coastal waters, while Prochlorococcus appeared to be more highly abundant in offshore waters. Furthermore, the percentage contribution of each population to total picophytoplankton also exhibited different spatial distribution patterns along a coastal-offshore gradient. The percentage contribution of Synechococcus was spatially constant throughout the study area, while the fraction contributed by picoeukaryotes showed a reduced contribution from coastal to offshore waters. In contrast, Prochlorococcus exhibited an increased proportion to total picophytoplankton across a coastal-offshore gradient, suggesting the increasing importance of this population in offshore waters of the study area. As revealed by Canonical Correlation Analysis, the abundance of Synechococcus and picoeukaryotes increased significantly with reducing dissolved oxygen levels and pH, and with increasing total chlorophyll. In contrast, temperature was the only factor influencing the abundance of Prochlorococcus significantly increased with decreasing water temperature in the study area. Overall, results of the present study provide valuable information on the role of regional environmental factors in the distribution and dominance of picophytoplankton communities that are not only critical for the ocean productivity but also the impact on the carbon cycle in the study area.
The biophysical data presented in this article were collected in the east coast of Peninsular Malaysia from May to November 2009. These monthly surface data were obtained from 32 stations along the coastal-offshore transect and were analyzed to understand the spatial and temporal distributions of biophysical parameters during different monsoon seasons. The data presented here include sea surface temperature (SST), sea surface salinity (SSS), Secchi disk depth (SDD), Chlorophyll-a (Chl-a), suspended particulate matter (SPM), mineral suspended solid (MSS) and chromophoric dissolved organic matter (CDOM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.