Osteosarcomas are malignant tumors of bone, most commonly seen in children and adolescents. Despite advances in modern medicine, the poor survival rate of metastatic osteosarcoma has not improved in two decades. In the present study we have investigated the effect of Riluzole on a human and mouse metastatic osteosarcoma cells. We show that LM7 cells secrete glutamate in the media and that mGluR5 receptors are required for the proliferation of LM7 cells. Riluzole, which is known to inhibit glutamate release, inhibits proliferation, induces apoptosis and prevents migration of LM7 cells. This is also seen with Fenobam, a specific blocker of mGluR5. We also show that Riluzole alters the phosphorylation status of AKT/P70 S6 kinase, ERK1/2 and JNK1/2. Thus Riluzole is an effective drug to inhibit proliferation and survival of osteosarcoma cells and has therapeutic potential for the treatment of osteosarcoma exhibiting autocrine glutamate signaling.
Glioblastomas exploit various molecular pathways to promote glutamate- dependent growth by activating the AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid) receptor, the group II metabotropic glutamate receptor, mGluR, and the epidermal growth factor receptor, EGFR. We hypothesized that targeting more than one of these pathways would be more effective in inhibiting glutamate-dependent growth. Using a model of U87 cell line, we show that blocking glutamate release by Riluzole inhibits cell proliferation. Glutamate-dependent growth is effectively inhibited by a combination of Iressa, an inhibitor of EGFR activation and LY341495, a group II mGluR inhibitor. Treatment of U87 cells with a combination of Iressa and LY341495 inhibits proliferation as indicated by Ki-67 staining, induces apoptosis and inhibits migration of U87 cells more effectively than the treatment by Iressa or LY341495 alone. These results demonstrate that a combinatorial therapy with Iressa and LY341495 is more effective due to synergistic effects of these drugs in inhibiting the growth of glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.