Bid is the only known Bcl-2 family member that can function as an agonist of proapoptotic Bcl-2-related proteins such as Bax and Bak. Expression of the proapoptotic Bcl-2 family protein Bid was assessed by immunoblotting and immunohistochemical methods in normal murine and human tissues, and in several types of human cancers and tumor cell lines. Bid expression in normal tissues varied widely, with prominent Bid immunostaining occurring in several types of short-lived cells (e.g., germinal center B cells, peripheral blood granulocytes, differentiated keratinocytes) and in apoptosis-sensitive cells (e.g., adult neurons). Analysis of Bid expression by immunostaining of 100 colon, 95 ovarian, and 254 prostate cancers, as well as 59 brain tumors and 50 lymphomas, revealed evidence of altered Bid regulation in some types of cancers. Correlations with clinical outcome data revealed association of higher levels of Bid with longer recurrence-free survival in men with locally advanced (T3 stage) prostate cancer (P=0.04). Immunoblot analysis of Bid protein levels in the NCI's panel of 60 human tumor cell lines revealed a correlation between higher levels of Bid and sensitivity to ribonucleotide reductase (RR)-inhibiting drugs (P<0.0005). Overexpression of Bid in a model tumor cell line by gene transfection resulted in increased sensitivity to apoptosis induction by a RR inhibitor. Taken together, these observations suggest a potential role for Bid in tumor responses to specific chemotherapeutic drugs, and lay a foundation for future investigations of this member of the Bcl-2 family in healthy and diseased tissues.
Purpose: Caspase-14 is unique among caspase family proteases in that its proteolytic processing has been principally associated with epithelial cell differentiation rather than apoptosis or inflammation.We investigated caspase-14 expression in several types of human epithelial malignancy by immunohistochemistry, correlating results with stage, histologic grade, and patient survival. Experimental Design: Tumor-associated alterations in caspase-14 expression were observed for cervical, ovarian, breast, gastric, and colon cancers. Results: In cervical (n = 445), ovarian (n = 91), and colon (n = 106) specimens, expression of caspase-14 was significantly reduced in cancers compared with normal epithelium. Decreases in caspase-14 immunopositivity correlated with the histologic progression of cervical cancer (P < 0.0001, ANOVA). In localized gastric cancers, caspase-14 immunostaining was significantly lower in poorly differentiated tumors compared with well-differentiated tumors (P = 0.02, Pearson's m 2 analysis). Lower caspase-14 expression was associated with advanced clinical stage in ovarian cancer (P = 0.04, ANOVA) and with shorter overall survival among ovarian cancer patients with serous tumors (n = 62) in both univariate (P = 0.005) and multivariate (P = 0.03) analysis. Lower caspase-14 expression correlated with shorter overall survival among patients with T 3 N 0 M 0 stage gastric cancers (n = 94; P = 0.006, log-rank test). In contrast to cervical, ovarian, and colon cancers, caspase-14 expression was increased in ductal carcinoma in situ and invasive cancers compared with normal mammary epithelium (P = 0.001, t test). Conclusions: The findings reveal tumor-specific alterations in caspase-14 expression and suggest that differences in its expression may define subsets of epithelial cancers with distinct clinical behaviors.
Proteases exert control over cell behavior and affect many biological processes by making proteolytic modification of regulatory proteins. The purpose of this paper is to describe novel, important functions of matrix metalloproteinase (MMP)-26. ␣1-Antitrypsin (AAT) is a serpin, the primary function of which is to regulate the activity of neutrophil/leukocyte elastase. Insufficient antiprotease activity because of AAT deficiency in the lungs is a contributing factor to early-onset emphysema. We recently discovered that AAT is efficiently cleaved by a novel metalloproteinase, MMP-26, which exhibits an unconventional PH 81
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.