A virtual monochromatic image (VMI) is acquired from two different types of polychromatic energy X-rays, not a monochromatic X-ray. The effective energy of monochromatic X-ray does not vary in passing through the patient's body. On the other hand, beam hardening effects are seen in images because of the change of polychromatic X-ray energy. The purpose of the present study was to evaluate the beam hardening improvement effect of VMI using a phantom with a bone mimicking ring. Method: We used a water equivalent electron density phantom with a hole in the center for inserting various measurement materials (i.e. fat, two types of bone with differing densities, contrast medium, blood, and water). Then, the CT numbers of each measurement materials were obtained from single energy CT (SECT) images and VMIs, respectively. Also, an additional bone-mimetic ring was used to obtain the CT numbers for evaluation of beam hardening effect. The CT number change rates were calculated from the obtained CT numbers with and without beam hardening effect. Result: The rate of CT number, change of VMI was significantly lower than that of SECT for all measured materials. Conclusion: In this study, VMI minimized changes in CT numbers due to the beam hardening effect and showed a higher beam hardening reduction effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.