The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multi-center study assessing neuroimaging in diagnosis and longitudinal monitoring. Amnestic Mild Cognitive Impairment (MCI) often represents a prodromal form of dementia, conferring a 10-15% annual risk of converting to probable AD. We analyzed baseline 1.5T MRI scans in 693 participants from the ADNI cohort divided into four groups by baseline diagnosis and one year MCI to probable AD conversion status to identify neuroimaging phenotypes associated with MCI and AD and potential predictive markers of imminent conversion. MP-RAGE scans were analyzed using publicly available voxel-based morphometry (VBM) and automated parcellation methods. Measures included global and hippocampal grey matter (GM) density, hippocampal and amygdalar volumes, and cortical thickness values from entorhinal cortex and other temporal and parietal lobe regions. The overall pattern of structural MRI changes in MCI (n=339) and AD (n=148) compared to healthy controls (HC, n=206) was similar to prior findings in smaller samples. MCI-Converters (n=62) demonstrated a very similar pattern of atrophic changes to the AD group up to a year before meeting clinical criteria for AD. Finally, a comparison of effect sizes for contrasts between the MCI-Converters and MCI-Stable (n=277) groups on MRI metrics indicated that degree of neurodegeneration of medial temporal structures was the best antecedent MRI marker of imminent conversion, with decreased hippocampal volume (left > right) being the most robust. Validation of imaging biomarkers is important as they can help enrich clinical trials of disease modifying agents by identifying individuals at highest risk for progression to AD.
MRI-based hippocampal volume analysis has been extensively employed given its potential as a biomarker for brain disorders such as Alzheimer's disease (AD), and accurate and efficient determination of hippocampal volumes from brain images is still a challenging issue. We compared an automated method, FreeSurfer (V4), with a published manual protocol for the determination of hippocampal volumes from T1-weighted MRI scans. Our study included MRI data from 125 older adult subjects: healthy controls with no significant cognitive complaints or deficits (HC, n=38), euthymic individuals with cognitive complaints (CC, n=39) but intact neuropsychological performance, and patients with amnestic mild cognitive impairment (MCI, n=37) or a clinical diagnosis of probable AD (AD, n=11). Pearson correlations and intraclass correlation coefficients (ICCs) were calculated to evaluate the relationship between results of the manual tracing and FreeSurfer methods and to estimate their agreement. Results indicated that these two methods derived highly correlated results with strong agreement. After controlling for the age, sex and intracranial volume in statistical group analysis, both the manual tracing and FreeSurfer methods yield similar patterns: both the MCI group and the AD group showed hippocampal volume reduction compared to both the HC group and the CC group, and the HC and CC groups did not differ. These comparisons suggest that FreeSurfer has the potential to be used in automated determination of hippocampal volumes for large-scale MCI/AD-related MRI studies, where manual methods are inefficient or not feasible.
Accurate and efficient segmentation of the hippocampus from brain images is a challenging issue. Although experienced anatomic tracers can be reliable, manual segmentation is a time consuming process and may not be feasible for large-scale neuroimaging studies. In this paper, we compare an automated method, FreeSurfer (V4), with a published manual protocol on the determination of hippocampal boundaries from MRI scans, using data from an existing MCI/AD cohort. To perform the comparison, we develop an enhanced spherical harmonic processing framework to model and register these hippocampal traces. The framework treats the two hippocampi as a single geometric configuration and extracts the positional, orientation and shape variables in a multi-object setting. We apply this framework to register manual tracing and FreeSurfer results together and the two methods show stronger agreement on position and orientation than shape measures. Work is in progress to examine a refined FreeSurfer segmentation strategy and an improved agreement on shape features is expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.