Within the next decades, robots will need to be able to execute a large variety of tasks autonomously in a large variety of environments. To relax the resulting programming effort, a knowledge-enabled approach to robot programming can be adopted to organize information in re-usable knowledge pieces. However, for the ease of reuse, there needs to be an agreement on the meaning of terms. A common approach is to represent these terms using ontology languages that conceptualize the respective domain. In this work, we will review projects that use ontologies to support robot autonomy. We will systematically search for projects that fulfill a set of inclusion criteria and compare them with each other with respect to the scope of their ontology, what types of cognitive capabilities are supported by the use of ontologies, and which is their application domain.
The OntoSPM Collaborative Action has been in operation for 24 months, with a growing dedicated membership. Its main result is a modular ontology, undergoing constant updates and extensions, based on the experts' suggestions. It remains an open collaborative action, which always welcomes new contributors and applications.
Purpose Surgical workflow recognition and context-aware systems could allow better decision making and surgical planning by providing the focused information, which may eventually enhance surgical outcomes. While current developments in computer-assisted surgical systems are mostly focused on recognizing surgical phases, they lack recognition of surgical workflow sequence and other contextual element, e.g., "Instruments." Our study proposes a hybrid approach, i.e., using deep learning and knowledge representation, to facilitate recognition of the surgical workflow. Methods We implemented "Deep-Onto" network, which is an ensemble of deep learning models and knowledge management tools, ontology and production rules. As a prototypical scenario, we chose robot-assisted partial nephrectomy (RAPN). We annotated RAPN videos with surgical entities, e.g., "Step" and so forth. We performed different experiments, including the inter-subject variability, to recognize surgical steps. The corresponding subsequent steps along with other surgical contexts, i.e., "Actions," "Phase" and "Instruments," were also recognized. Results The system was able to recognize 10 RAPN steps with the prevalence-weighted macro-average (PWMA) recall of 0.83, PWMA precision of 0.74, PWMA F1 score of 0.76, and the accuracy of 74.29% on 9 videos of RAPN. Conclusion We found that the combined use of deep learning and knowledge representation techniques is a promising approach for the multi-level recognition of RAPN surgical workflow.
Surgical training improves patient care, helps to reduce surgical risks, increases surgeon's confidence, and thus enhances overall patient safety. Current surgical training systems are more focused on developing technical skills, e.g. dexterity, of the surgeons while lacking the aspects of context-awareness and intra-operative real-time guidance. Context-aware intelligent training systems interpret the current surgical situation and help surgeons to train on surgical tasks. As a prototypical scenario, we chose Thoracentesis procedure in this work. We designed the context-aware software framework using the surgical process model encompassing ontology and production rules, based on the procedure descriptions obtained through textbooks and interviews, and ontology-based and marker-based object recognition, where the system tracked and recognised surgical instruments and materials in surgeon's hands and recognised surgical instruments on the surgical stand. The ontology was validated using annotated surgical videos, where the system identified "Anaesthesia" and "Aspiration" phase with 100% relative frequency and "Penetration" phase with 65% relative frequency. The system tracked surgical swab and 50mL syringe with approximately 88.23% and 100% accuracy in surgeon's hands and recognised surgical instruments with approximately 90% accuracy on the surgical stand. Surgical workflow training with the proposed system showed equivalent results as the traditional mentor-based training regime, thus this work is a step forward a new tool for context awareness and decision-making during surgical training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.