In this paper, we develop a new type of snake-like robot using screw-drive units connected by active joints. The screw drive units enable the robot to generate propulsion on any side of the body in contact with environments. Another feature of this robot is the omni-directional mobility by combinations of screws' angular velocities. We also derive a kinematic model and apply it to trajectory tracking control. Furthermore, we design a front-unit-following controller, which is suitable for manual operations. In this control system, operators are required to command only one unit in the front, then commands for the rest of the units are automatically calculated to track the path of the preceding units. Asymptotic convergence of the tracking error of the front-unit-following controller is analyzed based on a Lyapunov approach for the case of constant curvature. The effectiveness of the control method is demonstrated by numerical examples and experiments.Index Terms-snake-like robot, screw drive mechanism, path tracking, search and rescue
This paper proposes a control method for locomotion mode transformation of a mobile robot with wheel-arms. The proposed method aims at transformation from a four-wheeled mode for high speed mobility to an inverted pendulum mode, which has advantages of high viewing position and small turning radius. Since the initial state of the system is far away from the target equilibrium point of the wheeled inverted pendulum system, we use a nonlinear controller based on sliding mode control. In contrast that the previous transformation methods cannot control the robot velocity until the robot body is lifted up, the proposed method can take into account the robot velocity from the beginning of the transformation, which enables to complete the transformation in a smaller space. To analyze the asymptotic stability of the control system on the sliding surface, we derive an invariant set in which the system state converges to the origin without going out. Furthermore, the effectiveness of the proposed method is demonstrated in both simulations and real robot experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.