Many recent Short Answer Scoring (SAS) systems have employed Quadratic Weighted Kappa (QWK) as the evaluation measure of their systems. However, we hypothesize that QWK is unsatisfactory for the evaluation of the SAS systems when we consider measuring their effectiveness in actual usage. We introduce a new task formulation of SAS that matches the actual usage. In our formulation, the SAS systems should extract as many scoring predictions that are not critical scoring errors (CSEs). We conduct the experiments in our new task formulation and demonstrate that a typical SAS system can predict scores with zero CSE for approximately 50% of test data at maximum by filtering out low-reliablility predictions on the basis of a certain confidence estimation. This result directly indicates the possibility of reducing half the scoring cost of human raters, which is more preferable for the evaluation of SAS systems.
Short answer scoring (SAS) is the task of grading short text written by a learner. In recent years, deep-learning-based approaches have substantially improved the performance of SAS models, but how to guarantee high-quality predictions still remains a critical issue when applying such models to the education field. Towards guaranteeing highquality predictions, we present the first study of exploring the use of human-in-the-loop framework for minimizing the grading cost while guaranteeing the grading quality by allowing a SAS model to share the grading task with a human grader. Specifically, by introducing a confidence estimation method for indicating the reliability of the model predictions, one can guarantee the scoring quality by utilizing only predictions with high reliability for the scoring results and casting predictions with low reliability to human graders. In our experiments, we investigate the feasibility of the proposed framework using multiple confidence estimation methods and multiple SAS datasets. We find that our human-in-theloop framework allows automatic scoring models and human graders to achieve the target scoring quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.