To understand the immunomodulatory effects of Lactobacillus acidophilus L-92 cells suggested from our previous
study of in vivo anti-allergy and anti-virus effects, host immune responses in macrophage-like THP-1 cells after
4 h (the early phase) and 24 h (the late phase) of cocultivation with L-92 cells were investigated by transcriptome analysis. In
the early phase of L-92 treatment, various transcription regulator genes, such as, NFkB1, NFkB2, JUN, HIVEP2 and
RELB, and genes encoding chemokines and cytokines, such as CCL4, CXCL11, CCL3 and
TNF, were upregulated. Two transmembrane receptor genes, TLR7 and ICAM1, were
also upregulated in the early phase of treatment. In contrast, many transmembrane receptor genes, such as IL7R, CD80,
CRLF2, CD86, CD5, HLA-DQA1, IL2RA, IL15RA and CSF2RA, and some cytokine genes, including IL6,
IL23A and CCL22, were significantly upregulated in the late phase after L-92 exposure. Some genes
encoding cytokines, such as IL1A, IL1B and IL8, and the enzyme IDO1 were
upregulated at both the early and the late phases of treatment. These results suggest that probiotic L-92 might promote Th1 and
regulatory T-cell responses by activation of the MAPK signaling pathway, followed by the NOD-like receptor signaling pathway in
THP-1 cells.