We have recently reported that angiotensin II (Ang II)-induced mitogen-activated protein kinase (MAPK) activation is mainly mediated by Ca 2؉ -dependent activation of a protein tyrosine kinase through G q -coupled Ang II type 1 receptor in cultured rat vascular smooth muscle cells (VSMC). In the present study, we found Ang II rapidly induced the tyrosine phosphorylation of the epidermal growth factor (EGF) receptor and its association with Shc and Grb2. These reactions were inhibited by the EGF receptor kinase inhibitor, AG1478. The Ang II-induced phosphorylation of the EGF receptor was mimicked by a Ca 2؉ ionophore and completely inhibited by an intracellular Ca 2؉ chelator. Thus, AG1478 abolished the MAPK activation induced by Ang II, a Ca 2؉ ionophore as well as EGF but not by a phorbol ester or platelet-derived growth factor-BB in the VSMC. Moreover, Ang II induced association of EGF receptor with catalytically active c-Src. This reaction was not affected by AG1478. These data indicate that Ang II induces Ca 2؉ -dependent transactivation of the EGF receptor which serves as a scaffold for pre-activated c-Src and for downstream adaptors, leading to MAPK activation in VSMC.
Abstract-PYK2, a recently identified Ca 2ϩ -sensitive tyrosine kinase, has been implicated in extracellular signal-regulated kinase (ERK) activation via several G protein-coupled receptors. We have reported that angiotensin II (Ang II) induces Ca 2ϩ -dependent transactivation of the epidermal growth factor receptor (EGFR) which serves as a scaffold for preactivated c-Src and downstream adaptors (Shc/Grb2), leading to ERK activation in cultured rat vascular smooth muscle cells (VSMC). Herein we demonstrate the involvement of PYK2 in this cascade. Ang II rapidly induced tyrosine phosphorylation of PYK2, whose effect was completely inhibited by an AT 1 receptor antagonist and an intracellular Ca 2ϩ chelator. A Ca 2ϩ ionophore also induced PYK2 tyrosine phosphorylation to a level comparable with that by Ang II, whereas phorbol ester-induced phosphorylation was less than that by Ang II. Moreover, PYK2 formed a complex coprecipitable with catalytically active c-Src after Ang II stimulation. Although a selective EGFR kinase inhibitor completely abolished Ang II-induced recruitment of Grb2 to EGFR and markedly attenuated Ang II-induced ERK activation, it had no effect on Ang II-induced PYK2 tyrosine phosphorylation or its association with c-Src and Grb2. These data suggest that the AT 1 receptor uses Ca 2ϩ -dependent PYK2 to activate c-Src, thereby leading to EGFR transactivation, which preponderantly recruits Grb2 in rat VSMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.