We build nearly topological quantum field theories in various dimensions. We give special attention to the case of 8 dimensions for which we first consider theories depending only on Yang-Mills fields. Two classes of gauge functions exist which correspond to the choices of two different holonomy groups in SO(8), namely SU (4) and Spin(7). The choice of SU (4) gives a quantum field theory for a Calabi-Yau fourfold. The expectation values for the observables are formally holomorphic Donaldson invariants. The choice of Spin(7) defines another eight dimensional theory for a Joyce manifold which could be of relevance in M -and F -theories. Relations to the eight dimensional supersymmetric Yang-Mills theory are presented. Then, by dimensional reduction, we obtain other theories, in particular a four dimensional one whose gauge conditions are identical to the non-abelian Seiberg-Witten equations. The latter are thus related to pure Yang-Mills self-duality equations in 8 dimensions as well as to the N=1, D=10 super Yang-Mills theory. We also exhibit a theory that couples 3-form gauge fields to the second Chern class in eight dimensions, and interesting theories in other dimensions. *
We argue the connection of Nekrasov's partition function in the Ω background and the moduli space of D-branes, suggested by the idea of geometric engineering and Gopakumar-Vafa invariants. In the instanton expansion of N = 2 SU (2) YangMills theory the Nakrasov's partition function with equivariant parameters ǫ 1 , ǫ 2 of toric action on C 2 factorizes correctly as the character of SU (2) L × SU (2) R spin representation. We show that up to two instantons the spin contents are consistent with the Lefschetz action on the moduli space of D2-branes on (local) F 0 . We also present an attempt at constructing a refined topological vertex in terms of the Macdonald function. The refined topological vertex with two parameters of T 2 action allows us to obtain the generating functions of equivariant χ y and elliptic genera of the Hilbert scheme of n points on C 2 by the method of topological vertex.
We describe the moduli space of SU(N) instantons in the presence of a general surface operator of type N=n_1+ ... +n_M in terms of the representations of the so-called chain-saw quiver, which allows us to write down the instanton partition function as a summation over the fixed point contributions labeled by Young diagrams. We find that the instanton partition function depends on the ordering of n_I which fixes a choice of the parabolic structure. This is in accord with the fact that the Verma module of the W-algebra also depends on the ordering of n_I. By explicit calculations, we check that the partition function agrees with the norm of a coherent state in the corresponding Verma module.Comment: 25+5 pages, 2 figures, 1 Mathematica file. v2: published versio
It has been argued that Nekrasov's partition function gives the generating function of refined BPS state counting in the compactification of M theory on local Calabi-Yau spaces. We show that a refined version of the topological vertex we previously proposed (hep-th/0502061) is a building block of Nekrasov's partition function with two equivariant parameters. Compared with another refined topological vertex by Iqbal, Kozcaz and Vafa (hep-th/0701156), our refined vertex is expressed entirely in terms of the specialization of the Macdonald symmetric functions which is related to the equivariant character of the Hilbert scheme of points on C 2 . We provide diagrammatic rules for computing the partition function from the web diagrams appearing in geometric engineering of Yang-Mills theory with eight supercharges. Our refined vertex has a simple transformation law under the flop operation of the diagram, which suggests that homological invariants of the Hopf link are related to the Macdonald functions.(IKV ) µνλ (t, q) 1 Our notations for partitions are summarized in Appendix E. 2 We have slightly changed the original definition in [14] by improving the framing factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.