BackgroundThere has been uncertainty regarding the benefit of glycemic control with antidiabetic agents in prevention of diabetic macrovascular disease. Further development of novel antidiabetic agents is essential for overcoming the burden of diabetic macrovascular disease. The renal sodium glucose co-transporter 2 (SGLT2) inhibitor is a novel antihyperglycemic agent for treatment of type 2 diabetes. This work was performed to determine whether empagliflozin, a novel SGLT2 inhibitor, can ameliorate cardiovascular injury and cognitive decline in db/db mouse, a model of obesity and type 2 diabetes.Methods(1) Short-term experiment: The first experiment was performed to examine the effect of 7 days of empagliflozin treatment on urinary glucose excretion and urinary electrolyte excretion in db/db mice. (2) Long-term experiment: The second experiment was undertaken to examine the effect of 10 weeks of empagliflozin treatment on cardiovascular injury, vascular dysfunction, cognitive decline, and renal injury in db/db mice.Results(1) Short-term experiment: Empagliflozin administration significantly increased urinary glucose excretion, urine volume, and urinary sodium excretion in db/db mice on day 1, but did not increase these parameters from day 2. However, blood glucose levels in db/db mice were continuously decreased by empagliflozin throughout 7 days of the treatment. (2) Long-term experiment: Empagliflozin treatment caused sustained decrease in blood glucose in db/db mice throughout 10 weeks of the treatment and significantly slowed the progression of type 2 diabetes. Empagliflozin significantly ameliorated cardiac interstitial fibrosis, pericoronary arterial fibrosis, coronary arterial thickening, cardiac macrophage infiltration, and the impairment of vascular dilating function in db/db mice, and these beneficial effects of empagliflozin were associated with attenuation of oxidative stress in cardiovascular tissue of db/db mice. Furthermore, empagliflozin significantly prevented the impairment of cognitive function in db/db mice, which was associated with the attenuation of cerebral oxidative stress and the increase in cerebral brain-derived neurotrophic factor. Empagliflozin ameliorated albuminuria, and glomerular injury in db/db mice.ConclusionsGlycemic control with empagliflozin significantly ameliorated cardiovascular injury and remodeling, vascular dysfunction, and cognitive decline in obese and type 2 diabetic mice. Thus, empagliflozin seems to be potentially a promising therapeutic agent for diabetic macrovascular disease and cognitive decline.
The purpose of this study was to determine the safety, distribution, internal dosimetry, and initial human epidermal growth factor receptor 2 (HER2)-positive tumor images of 64 Cu-DOTA-trastuzumab in humans. Methods: PET was performed on 6 patients with primary or metastatic HER2-positive breast cancer at 1, 24, and 48 h after injection of approximately 130 MBq of the probe 64 Cu-DOTA-trastuzumab. Radioactivity data were collected from the blood, urine, and normal-tissue samples of these 6 patients, and the multiorgan biodistribution and internal dosimetry of the probe were evaluated. Safety data were collected for all the patients after the administration of 64 Cu-DOTA-trastuzumab and during the 1-wk follow-up period. Results: According to our results, the best timing for the assessment of 64 Cu-DOTA-trastuzumab uptake by the tumor was 48 h after injection. Radiation exposure during 64 Cu-DOTA-trastuzumab PET was equivalent to that during conventional 18 F-FDG PET. The radioactivity in the blood was high, but uptake of 64 Cu-DOTA-trastuzumab in normal tissues was low. In 2 patients, 64 Cu-DOTA-trastuzumab PET showed brain metastases, indicative of blood-brain barrier disruptions. In 3 patients, 64 Cu-DOTA-trastuzumab PET imaging also revealed primary breast tumors at the lesion sites initially identified by CT. Conclusion: The findings of this study indicated that 64 Cu-DOTA-trastuzumab PET is feasible for the identification of HER2-positive lesions in patients with primary and metastatic breast cancer. The dosimetry and pharmacologic safety results were acceptable at the dose required for adequate PET imaging.
BackgroundThe potential benefit of SGLT2 inhibitors in metabolic syndrome is with prediabetic stage unclear. This work was undertaken to investigate the non-glycemic effect of empagliflozin on metabolic syndrome rats with prediabetes.MethodsSHR/NDmcr-cp(+/+) rats (SHRcp), a model of metabolic syndrome with prediabetes, were given empagliflozin for 10 weeks to examine the effects on urinary sodium and water balance, visceral and subcutaneous adipocyte, and cardiac injury. Further, the effect of empagliflozin on blood pressure and autonomic nervous system was continuously investigated by using radiotelemetry system.ResultsEmpagliflozin significantly reduced urinary sodium and water balance of SHRcp only within 1 week of the treatment, but later than 1 week did not alter them throughout the treatment. Empagliflozin significantly reduced body weight of SHRcp, which was mainly attributed to the significant reduction of subcutaneous fat mass. Empagliflozin significantly reduced the size of visceral adipocytes and increased the number of smaller size of adipocytes, which was associated with the attenuation of oxidative stress. Empagliflozin ameliorated cardiac hypertrophy and fibrosis of SHRcp, in association with the attenuation of cardiac oxidative stress and inflammation. However, empagliflozin did not significantly change blood pressure, heart rate, sympathetic activity, or baroreceptor function, as evidenced by radiotelemetry analysis.ConclusionsOur present work provided the evidence that SGLT2 inhibition reduced visceral adipocytes hypertrophy and ameliorated cardiac injury in prediabetic metabolic syndrome rat, independently of diuretic effect or blood pressure lowering effect. Thus, SGLT2 inhibition seems to be a promising therapeutic strategy for prediabetic metabolic syndrome.Electronic supplementary materialThe online version of this article (doi:10.1186/s12933-016-0473-7) contains supplementary material, which is available to authorized users.
BackgroundThe purpose of this study was to determine whether brain metastases from HER2-positive breast cancer could be detected noninvasively using positron emission tomography (PET) with 64Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-trastuzumab.MethodsPET was performed on five patients with brain metastases from HER2-positive breast cancer, at 24 or 48 h after the injection of approximately 130 MBq of the probe 64Cu-DOTA-trastuzumab. Radioactivity in metastatic brain tumors was evaluated based on PET images in five patients. Autoradiography, immunohistochemistry (IHC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were performed in one surgical case to confirm HER2 specificity of 64Cu-DOTA-trastuzumab.ResultsMetastatic brain lesions could be visualized by 64Cu-DOTA-trastuzumab PET in all of five cases, which might indicated that trastuzumab passes through the blood-brain barrier (BBB). The HER2 specificity of 64Cu-DOTA-trastuzumab was demonstrated in one patient by autoradiography, immunohistochemistry, and LC-MS/MS.ConclusionsCu-DOTA-trastuzumab PET could be a potential noninvasive procedure for serial identification of metastatic brain lesions in patients with HER2-positive breast cancer.Trial registrationUMIN000004170
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.