We constructed a novel bacterial genome detection system using zinc finger protein (ZF) fused with firefly luciferase (ZF-luciferase). Taking advantage of the direct recognition of double-stranded DNA (dsDNA) by ZF, we previously constructed bacterial genome detection systems that did not require dehybridization processes. To detect polymerase chain reaction (PCR) products rapidly and with a high sensitivity, we constructed two kinds of ZF-luciferase, Sp1-fused luciferase (Sp1-luciferase), and Zif268-fused luciferase (Zif268-luciferase). ZF-luciferase not only maintains luciferase activity but also shows dsDNA-binding ability and specificity. Furthermore, we succeeded in the detection of 10 copies of the genome of Legionella pneumophila and Escherichia coli O157. ZF-luciferase would be a useful tool for highly sensitive detection of pathogenic bacterial genome.
A novel method of rapid and specific detection of polymerase chain reaction (PCR) products from bacterial genomes using Zn finger proteins was developed. Zn finger proteins are DNA-binding proteins that can sequence specifically recognize PCR products. Since Zn finger proteins can directly detect PCR products without undergoing dehybridization, unlike probe DNA, and can double check the specific PCR amplification and sequence specificity of the PCR products, this novel method would be quick and highly accurate. In this study, we tried to detect Legionella pneumophila using Sp1. It was found that a 49 bp L. pneumophila-specific region containing the Sp1 recognition site is located on the flhA gene of the L. pneumophila genome. We succeeded in specifically detecting PCR products amplified from L. pneumophila in the presence of other bacterial genomes by ELISA, and demonstrated that Sp1 enables the discrimination of L. pneumophila-specific PCR products from others. By fluorescence depolarization measurement, these specific PCR products could be detected within 1 min. These results indicate that the rapid and simple detection of PCR products specific to L. pneumophila using a Zn finger protein was achieved. This methodology can be applied to the detection of other bacteria using various Zn finger proteins that have already been reported.
A novel detection system of PCR products from bacterial genomes using Zinc finger proteins was developed. Zinc finger proteins are DNA-binding proteins that can bind to dsDNA with high affinity and specificity. Since Zinc finger proteins can directly detect PCR products and can double-check the specific PCR amplification and sequence specificity of the PCR products, this novel method would be quick and highly accurate. In this study, we tried to construct the detection system for three pathogen, Legionella pneumophila, Salmonella spp. and Influenza A virus using well-characterized Zinc finger proteins. As a result, we succeeded in detecting the PCR products from Legionella pneumophila, Salmonella spp. and Influenza A virus using Sp1 and Zif268. Therefore, this methodology can be applied to the detection of most pathogen using various Zinc finger proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.