The heme compound found in deoxyribonucleic acid (DNA) extracted from bloodstains, which is regarded as a major inhibitor of polymerase chain reaction (PCR), was characterized in comparison with alkaline and acid hematin, histidine and ammonia hemochromogens, and globin and serum albumin hemochromogens digested by proteinase K. Alkaline and acid hematin were almost completely removed by phenol/chloroform treatment and ethanol precipitation, so as not to be copurified with DNA from the specimens. Spectrophotometric results indicated that the contaminant was likely to be the product of proteinase K digestion of some heme-blood protein complex, which was not completely extracted by organic solvents and remained in the ethanol precipitates of DNA. The results of polyacrylamide gradient gel electrophoresis and intensity of the inhibition of PCR suggested that the ligand of the contaminant was a somewhat large molecule, resistant to the proteolysis by proteinase K. The addition of bovine serum albumin to the reaction mixture prevented the inhibition of PCR by the heme compounds, probably by binding to the heme. This showed that the inhibition was not due to the irreversible inactivation of the enzyme.
Endothelial-mesenchymal transformation (EMT) is a critical event in the generation of the endocardial cushion, the primordia of the valves and septa of the adult heart. This embryonic phenomenon occurs in the outflow tract (OT) and atrioventricular (AV) canal of the embryonic heart in a spatiotemporally restricted manner, and is initiated by putative myocardially derived inductive signals (adherons) which are transferred to the endocardium across the cardiac jelly. Abnormal development of endocardial cushion tissue is linked to many congenital heart diseases. At the onset of EMT in chick cardiogenesis, transforming growth factor (TGFbeta)-3 is expressed in transforming endothelial and invading mesenchymal cells, while bone morphogenetic protein (BMP)-2 is expressed in the subjacent myocardium. Three-dimensional collagen gel culture experiments of the AV endocardium show that 1) myocardially derived inductive signals upregulate the expression of AV endothelial TGFbeta3 at the onset of EMT, 2) TGFbeta3 needs to be expressed by these endothelial cells to trigger the initial phenotypic changes of EMT, and 3) myocardial BMP2 acts synergistically with TGFbeta3 in the initiation of EMT.
CD44, an adhesion molecule that binds to the extracellular matrix, primarily to hyaluronan (HA), has been implicated in cancer cell migration, invasion, and metastasis. CD44 has also recently been recognized as a marker for stem cells of several types of cancer. However, the roles of CD44 in the development of bone metastasis are unclear. Here, we addressed this issue by using bone metastatic cancer cell lines, in which CD44 was stably knocked down. Tumor sphere formation and cell migration and invasion were significantly inhibited by CD44 knockdown. Furthermore, the downregulation of CD44 markedly suppressed tumorigenicity and bone metastases in nude mice. Of note, the number of osteoclasts decreased in the bone metastases. Microarray analysis revealed that the expression of HA synthase 2 was downregulated in CD44-knockdown cells. The localization of HA in the bone metastatic tumors was also markedly reduced. We then examined the roles of CD44-HA interaction in bone metastasis using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis. 4-MU decreased tumor sphere and osteoclast-like cell formation in vitro. Moreover, 4-MU inhibited bone metastases in vivo with reduced number of osteoclasts. These results collectively suggest that CD44 expression in cancer cells promotes bone metastases by enhancing tumorigenicity, cell migration and invasion, and HA production. Our results also suggest the possible involvement of CD44-expressing cancer stem cells in the development of bone metastases through interaction with HA. CD44-HA interaction could be a potential target for therapeutic intervention for bone metastases. Cancer Res; 73(13); 4112-22. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.