We propose a real-time spatiotemporal division multiplexing electroholography utilizing the features of movies. The proposed method spatially divides a 3-D object into plural parts and periodically selects a divided part in each frame, thereby reconstructing a three-dimensional (3-D) movie of the original object. Computer-generated holograms of the selected part are calculated by a single graphics processing unit and sequentially displayed on a spatial light modulator. Visual continuity enables a reconstructed movie of the original 3-D object. The proposed method realized a real-time reconstructed movie of a 3-D object composed of 11,646 points at over 30 frames per second (fps). We also displayed a reconstructed movie of a 3-D object composed of 44,647 points at about 10 fps.
We propose real-time time-division color electroholography using a single graphics processing unit (GPU) and a simple synchronization system of reference light. To facilitate real-time time-division color electroholography, we developed a light emitting diode (LED) controller with a universal serial bus (USB) module and the drive circuit for reference light. A one-chip RGB LED connected to a personal computer via an LED controller was used as the reference light. A single GPU calculates three computer-generated holograms (CGHs) suitable for red, green, and blue colors in each frame of a three-dimensional (3D) movie. After CGH calculation using a single GPU, the CPU can synchronize the CGH display with the color switching of the one-chip RGB LED via the LED controller. Consequently, we succeeded in real-time time-division color electroholography for a 3D object consisting of around 1000 points per color when an NVIDIA GeForce GTX TITAN was used as the GPU. Furthermore, we implemented the proposed method in various GPUs. The experimental results showed that the proposed method was effective for various GPUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.