Highlights d Human TS cells have the capacity to give rise to the three major trophoblast lineages d Human TS and primary trophoblast cells have similar transcriptomes and methylomes d Human TS cells injected into mice mimic trophoblast invasion during implantation d Signaling pathways maintaining human and mouse TS cells are substantially different
DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5–10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.
Highlights d Reprogramming of patient somatic cells to induced hTSCs with OSKM d Conversion of naive and extended hPSCs to hTSCs d Comparison of models of the human trophoblast lineage d h(i/c)TSCs are akin to day 8 trophoblasts of the human embryo
Summary
Human embryonic stem cells (hESCs) readily differentiate to somatic or germ lineages but have impaired ability to form extra-embryonic lineages such as placenta or yolk sac. Here, we demonstrate that naive hESCs can be converted into cells that exhibit the cellular and molecular phenotypes of human trophoblast stem cells (hTSCs) derived from human placenta or blastocyst. The resulting “transdifferentiated” hTSCs show reactivation of core placental genes, acquisition of a placenta-like methylome, and the ability to differentiate to extravillous trophoblasts and syncytiotrophoblasts. Modest differences are observed between transdifferentiated and placental hTSCs, most notably in the expression of certain imprinted loci. These results suggest that naive hESCs can differentiate to extra-embryonic lineage and demonstrate a new way of modeling human trophoblast specification and placental methylome establishment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.