We investigated the run-to-run fluctuation in growth conditions of physical vapor transport growth of 4H-SiC boules through observations of surface morphology on the (000-1) facet of the boules. The boules, which were grown under the same macroscopic growth conditions, exhibited slightly different surface morphologies. This indicates that some microscopic growth parameters that influence the surface morphology fluctuate between growth runs. We have considered the C/Si ratio of the vapor sublimed from the source material as a major parameter and discussed the associated variations in the physical and surface properties of the grown crystals.
The step structure on the (0001¯)C facet of 4H-SiC boules grown by the physical vapor transport growth method with different nitrogen doping concentrations was examined in various scales, using different types of microscopy, such as differential interference contrast optical microscopy (DICM) and atomic force microscopy (AFM). DICM observations unveiled characteristic macroscopic surface features of the facet dependent on the nitrogen doping concentration. AFM observations revealed the existence of step trains of half unit-cell height (0.5 nm) on the facet and found that their separation was undulated with a characteristic wavelength dependent on the nitrogen doping concentration; the higher the nitrogen concentration, the longer was the undulation wavelength of step separation. Based on these results, we discussed the origin and formation mechanism of the separation-undulated step structure observed on the (0001¯)C facet of nitrogen-doped 4H-SiC boules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.