Chitosan has various tissue regeneration effects. This study was designed to investigate the nerve regeneration effect of Schwann cell (SC)-encapsulated chitosan-collagen hydrogel nerve conduit (CCN) transplanted into a rat model of sciatic nerve defect. We prepared a CCN consisting of an outer layer of chitosan hydrogel and an inner layer of collagen hydrogel to encapsulate the intended cells. Rats with a 10-mm sciatic nerve defect were treated with SCs encapsulated in CCN (CCN+), CCN without SCs (CCN−), SC-encapsulated silicone tube (silicone+), and autologous nerve transplanting (auto). Behavioral and histological analyses indicated that motor functional recovery, axonal regrowth, and myelination of the CCN+ group were superior to those of the CCN− and silicone+ groups. Meanwhile, the CCN− and silicone+ groups showed no significant differences in the recovery of motor function and nerve histological restoration. In conclusion, SC-encapsulated CCN has a synergistic effect on peripheral nerve regeneration, especially axonal regrowth and remyelination of host SCs. In the early phase after transplantation, SC-encapsulated CCNs have a positive effect on recovery. Therefore, using SC-encapsulated CCNs may be a promising approach for massive peripheral nerve defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.