Mincle (also called as Clec4e and Clecsf9) is a C-type lectin receptor expressed in activated phagocytes. Recently, we have demonstrated that Mincle is an FcR␥-associated activating receptor that senses damaged cells. To search an exogenous ligand(s), we screened pathogenic fungi using cell line expressing Mincle, FcR␥, and NFAT-GFP reporter. We found that Mincle specifically recognizes the Malassezia species among 50 different fungal species tested. Malassezia is a pathogenic fungus that causes skin diseases, such as tinea versicolor and atopic dermatitis, and fatal sepsis. However, the specific receptor on host cells has not been identified. Mutation of the putative mannose-binding motif within C-type lectin domain of Mincle abrogated Malassezia recognition. Analyses of glycoconjugate microarray revealed that Mincle selectively binds to ␣-mannose but not mannan. Thus, Mincle may recognize specific geometry of ␣-mannosyl residues on Malassezia species and use this to distinguish them from other fungi. Malassezia activated macrophages to produce inflammatory cytokines/ chemokines. To elucidate the physiological function of Mincle, Mincle-deficient mice were established. Malassezia-induced cytokine/chemokine production by macrophages from Mincle ؊/؊ mice was significantly impaired. In vivo inflammatory responses against Malassezia was also impaired in Mincle ؊/؊ mice. These results indicate that Mincle is the first specific receptor for Malassezia species to be reported and plays a crucial role in immune responses to this fungus.ITAM ͉ macrophages ͉ signal transduction
Induced pluripotent stem cells (iPSCs) can now be produced from various somatic cell (SC) lines by ectopic expression of the four transcription factors. Although the procedure has been demonstrated to induce global change in gene and microRNA expressions and even epigenetic modification, it remains largely unknown how this transcription factor-induced reprogramming affects the total glycan repertoire expressed on the cells. Here we performed a comprehensive glycan analysis using 114 types of human iPSCs generated from five different SCs and compared their glycomes with those of human embryonic stem cells (ESCs; nine cell types) using a high density lectin microarray. In unsupervised cluster analysis of the results obtained by lectin microarray, both undifferentiated iPSCs and ESCs were clustered as one large group. However, they were clearly separated from the group of differentiated SCs, whereas all of the four SCs had apparently distinct glycome profiles from one another, demonstrating that SCs with originally distinct glycan profiles have acquired those similar to ESCs upon induction of pluripotency. Thirty-eight lectins discriminating between SCs and iPSCs/ESCs were statistically selected, and characteristic features of the pluripotent state were then obtained at the level of the cellular glycome. The expression profiles of relevant glycosyltransferase genes agreed well with the results obtained by lectin microarray. Among the 38 lectins, rBC2LCN was found to detect only undifferentiated iPSCs/ESCs and not differentiated SCs. Hence, the high density lectin microarray has proved to be valid for not only comprehensive analysis of glycans but also diagnosis of stem cells under the concept of the cellular glycome.
The lectin microarray is a novel platform for glycan analysis, having emerged only in recent years. Unlike other conventional methods, e.g., liquid chromatography and mass spectrometry, it enables rapid and high-sensitivity profiling of complex glycan features without the need for liberation of glycans. Target samples include an extensive range of glycoconjugates involved in cells, tissues, body fluids, as well as synthetic glycans and their mimics. Various procedures for rapid differential glycan profiling have been developed for glycan-related biomarkers. Such glycoproteomics targeting allows precise diagnosis of chronic diseases potentially related to cancer. Application of this method to evaluation of various types of stem cells resulted in the discovery of a new pluripotent cell-specific glycan marker. To explore this technology a more fundamental and extensive understanding of lectins is necessary in relation to the structural uniqueness of glycans. In this chapter, the essence of the lectin microarray is described with some focus on an evanescent-field-activated fluorescence detection principle as a system to achieve in situ (i.e., washing free) aqueous-phase observation under equilibrium conditions. The developed lectin microarray system allows even researchers with poor experience in glycan profiling to perform extensive high-throughput analysis targeting various forms of glycans and even cells.
Mouse sialic acid-binding immunoglobulin-like lectin F (Siglec-F) is an eosinophil surface receptor, which contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain, implicating it as a regulator of cell signaling as documented for other siglecs. Here, we show that the sialoside sequence 6'-sulfo-sLe(X) (Neu5Acalpha2-3[6-SO4] Galbeta1-4[Fucalpha1-3]GlcNAc) is a preferred ligand for Siglec-F. In glycan array analysis of 172 glycans, recombinant Siglec-F-Fc chimeras bound with the highest avidity to 6'-sulfo-sLe X. Secondary analysis showed that related structures, sialyl-Lewis X (sLe X) and 6-sulfo-sLe X containing 6-GlcNAc-SO4 showed much lower binding avidity, indicating significant contribution of 6-Gal-SO4 on Siglec-F binding to 6'-sulfo-sLe x. The lectin activity of Siglec-F on mouse eosinophils was "masked" by endogenous cis ligands and could be unmasked by treatment with sialidase. Unmasked Siglec-F mediated mouse eosinophil binding and adhesion to multivalent 6'-sulfo-sLe X structure, and these interactions were inhibited by anti-Siglec-F monoclonal antibody (mAb). Although there is no clear-cut human ortholog of Siglec-F, Siglec-8 is encoded by a paralogous gene that is expressed selectively by human eosinophils and has recently been found to recognize 6'-sulfo-sLe X. These observations suggest that mouse Siglec-F and human Siglec-8 have undergone functional convergence during evolution and implicate a role for the interaction of these siglecs with their preferred 6'-sulfo-sLe X ligand in eosinophil biology.
A Tim-3 ligand, galectin-9 (Gal-9), modulates various functions of innate and adaptive immune responses. In this study, we demonstrate that Gal-9 prolongs the survival of Meth-A tumor-bearing mice in a dose- and time-dependent manner. Although Gal-9 did not prolong the survival of tumor-bearing nude mice, transfer of naive spleen cells restored a prolonged Gal-9-induced survival in nude mice, indicating possible involvement of T cell-mediated immune responses in Gal-9-mediated antitumor activity. Gal-9 administration increased the number of IFN-γ-producing Tim-3+ CD8+ T cells with enhanced granzyme B and perforin expression, although it induced CD4+ T cell apoptosis. It simultaneously increased the number of Tim-3+CD86+ mature dendritic cells (DCs) in vivo and in vitro. Coculture of CD8+ T cells with DCs from Gal-9-treated mice increased the number of IFN-γ producing cells and IFN-γ production. Depletion of Tim-3+ DCs from DCs of Gal-9-treated tumor-bearing mice decreased the number of IFN-γ-producing CD8+ T cells. Such DC activity was significantly abrogated by Tim-3-Ig, suggesting that Gal-9 potentiates CD8+ T cell-mediated antitumor immunity via Gal-9-Tim-3 interactions between DCs and CD8+ T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.