Phenol present in wastewaters from various industries has an inhibitory effect on nitrification even at low concentrations. Hence, the biological treatment of wastewater containing both phenol and ammonia involves a series of treatment steps. It is difficult to achieve nitrification capability in an activated sludge system that contains phenol at concentrations above the inhibitory level. Batch treatment of wastewater containing various concentrations of phenol showed that the ammonia oxidation capability of suspended Nitrosomonas europaea cells, an ammonia oxidizer, was completely inhibited in the presence of more than 5.0 mg/L phenol. To protect the ammonia oxidizer from the inhibitory effect of phenol and to achieve ammonia oxidation capability in the wastewater containing phenol at concentrations above the inhibitory level, a simple bacterial consortium composed of an ammonia oxidizer (N. europaea) and a phenol‐degrading bacterial strain (Acinetobacter sp.) was used. Ammonia oxidation did not occur in the presence of phenol at concentrations above the inhibitory level when suspended or immobilized N. europaea and Acinetobacter sp. cells were used in batch treatment. Following the acclimatization of the immobilized cells, accumulation of nitrite was observed, even when the wastewater contained phenol at concentrations above the inhibitory level. These results showed that immobilization was effective in protecting N. europaea cells from the inhibitory effect of phenol present in the wastewater.
The biological reduction of selenium oxyanions is capable of reducing both selenate and selenite to insoluble elemental selenium. In this process, however, bacteria inevitably require expensive chemicals such as yeast extract in almost all cases. Therefore, the reduction of selenium oxyanions with inexpensive alcohol would be more practical. A Pseudomonas sp. strain 4C-C isolated from a sludge in a wastewater treatment facility was able to reduce selenate to selenite using ethanol as an electron donor for its anaerobic respiration, but could not reduce selenite to elemental selenium. Paracoccus denitrificans JCM-6892, on the other hand, was observed to be able to reduce selenite to elemental selenium in the presence of ethanol, but not selenate to selenite. Therefore, a mixture containing a suspension of Pseudomonas sp. strain 4C-C and P. denitrificans JCM-6892 cells allowed selenate to be reduced to insoluble elemental selenium via selenite in the presence of ethanol and was also capable of reducing nitrate to nitrogen gas. Aiming at simplicity of the recovery process of insoluble elemental selenium, a polymeric gel immobilized mixture of the two bacterial strains was examined using ethanol as an electron donor. The immobilized mixture could therefore reduce not only selenate to elemental selenium, but also nitrate to nitrogen gas in a single step. The gel that immobilized the microbial mixture changed its color during the process to bright red and no red elemental selenium was left in the wastewater. This indicates that the reduced elemental selenium was completely absorbed in the gel. This simple bacterial combination would therefore be effective in the presence of ethanol to reduce selenium oxyanions in various wastewaters containing selenium and the other oxyanions.
To improve the cooperative removal of nitrogen by Nitrosomonas europaea and Paracoccus denitrificans, we controlled their distribution in a tubular gel. When ethanol was supplied inside the tubular gel as an electron donor, their distributions overlapped in the external region of the gel. By changing the electron donor from ethanol to gaseous hydrogen, the distribution of P. denitrificans shifted to the inside of the tube and was separated from that of N. europaea. The separation resulted in an increase of the oxidation rate of ammonia by 25%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.