Recent developments of imaging techniques have enabled fluorescence microscopy to investigate the localization and dynamics of intracellular substances of interest even at the single-molecule level. However, such sensitive detection is often hampered by autofluorescence arising from endogenous molecules. Those unwanted signals are generally reduced by utilizing differences in either wavelength or fluorescence lifetime; nevertheless, extraction of the signal of interest is often insufficient, particularly for in vivo imaging. Here, we describe a potential method for the selective imaging of nitrogen-vacancy centers (NVCs) in nanodiamonds. This method is based on the property of NVCs that the fluorescence intensity sensitively depends on the ground state spin configuration which can be regulated by electron spin magnetic resonance. Because the NVC fluorescence exhibits neither photobleaching nor photoblinking, this protocol allowed us to conduct long-term tracking of a single nanodiamond in both Caenorhabditis elegans and mice, with excellent imaging contrast even in the presence of strong background autofluorescence.
Actin filament dynamics are critical in cell motility. The structure of actin filament changes spontaneously and can also be regulated by actin-binding proteins, allowing actin to readily function in response to external stimuli. The interaction with the motor protein myosin changes the dynamic nature of actin filaments. However, the molecular bases for the dynamic processes of actin filaments are not well understood. Here, we observed the dynamics of rabbit skeletal-muscle actin conformation by monitoring individual molecules in the actin filaments using single-molecule fluorescence resonance energy transfer (FRET) imaging with total internal reflection fluorescence microscopy (TIRFM). The time trajectories of FRET show that actin switches between low- and high-FRET efficiency states on a timescale of seconds. If actin filaments are chemically cross-linked, a state that inhibits myosin motility, the equilibrium shifts to the low-FRET conformation, whereas when the actin filament is interacting with myosin, the high-FRET conformation is favored. This dynamic equilibrium suggests that actin can switch between active and inactive conformations in response to external signals.
We report the first real time imaging of single fluorophores attached to protein molecules on metal surfaces in aqueous solution using surface plasmon resonance fluorescence microscopy. The fluorescence was enhanced by the surface plasmons as theoretically predicted for gold and silver. Active movement of single molecules of the fluorescently labeled motor protein, coupled to the ATPase reaction, was observed on the surfaces of gold and aluminum. This microscopy should prove a powerful tool to directly detect single molecule processes in biomolecule systems organized on a metal surface.[ S0031-9007(98)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.