The reconstituted zinc-myoglobin (ZnMb) dyads, ZnMb-[M(II)(edta)], have been prepared by incorporating a zinc-porphyrin (ZnP) cofactor modified with ethylenediaminetetraacetic acid (H(4)edta) into apo-Mb. In case of the monomeric ZnP(edta) cofactor coordinated by one pyridine molecule, ZnP(py)(edta), a spontaneous 1:1 complex with a transient metal ion was formed in an aqueous solvent, and the photoexcited singlet state of ZnP, (1)(ZnP)*, was quenched by the [Cu(II)(edta)] moiety through intramolecular photoinduced electron-transfer (ET) reaction. The rate constant for the intramolecular quenching ET (k(q)) at 25 degrees C was successfully obtained as k(q) = 5.1 x 10(9) s(-1). In the case of Co(2+), Ni(2+), and Mn(2+), intersystem crossing by paramagnetic effect was mainly considered between (1)(ZnP)* and the [M(II)(edta)] complex. For the ZnMb-[M(II)(edta)] systems, the intramolecular ET reaction between the excited singlet state of (1)(ZnMb)* and the [Cu(II)(edta)] moieties provided the slower quenching rate constant, k(q) = 2.1 x 10(8) s(-1), compared with that of the ZnP(py)(edta) one. Kinetic studies also presented the efficient fluorescence quenching of the (1)(ZnMb)*-[Co(II)(edta)] dyad. Our study clearly demonstrates that wrapping of the ZnP cofactor by the apoprotein matrix and synthetic manipulation at the Mb surface ensure metal ion-sensitive fluorescent dynamics of ZnMb and provides valuable information to elucidate the complicated mechanism of the biological photoinduced ET reactions of hemoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.