The characteristics of fiber-reinforced thermoplastics depend on the quantity and shape of fibers. The fiber-matrix separation and fiber orientation are caused by the flow during a molding process. Then, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation-orientation and molding conditions. In this paper, we propose the measurement method which is called image intensity method for fiber orientation distribution by image processing. In order to examine the accuracy of intersection counting and image intensity methods, the fiber orientation of simulation figure is measured using image processing. The image intensity method is rather accurate compared with the intersection counting method.International Polymer Processing downloaded from www.hanser-elibrary.com by Kungliga Tekniska on August 18, 2015For personal use only.
--Hybrid electric vehicles (HEVs) that emit less carbon dioxide have attracted much attention and rapidly become widespread, but further popularization of HEVs requires further technical advancement of mounted traction motors. Accordingly, our research group focuses on axial gap motors that can realize high torque density. In this paper, an axial gap motor with a novel interior permanent magnet (IPM) rotor structure is proposed and an examination of the proposed motor at the actual motor size of an HEV is presented. For comparison, we selected the newest radial gap-type 60 kW IPM synchronous motor equipped in the third-generation Toyota Prius. Under the condition that the size of the proposed motor be the same as the comparison motor, we confirmed through three-dimensional finite-element analysis that the proposed motor could output twice the maximum torque of the comparison motor. In addition, a comparison was made with a previously reported conventional IPM-type axial gap motor, and the proposed motor was found to be more effective in generating reluctance torque. Moreover, the proposed motor exhibited sufficient durability to irreversible demagnetization of the permanent magnets, to stress caused by rotating the rotor, and to unbalanced electromagnetic forces caused by axial rotor eccentricity.
Soft magnetic powder compacts can suppress eddy current loss compared to conventional laminated cores. However, the compacts accompany greater hysteresis losses because the easy magnetization axes are not controlled in powders. In this study, a novel soft magnetic compact was prepared from a plateletshaped iron powder with well-controlled easy magnetization axes and its effects on magnetic properties and crystal orientation of the compact were investigated. Such platelet iron powder was produced using a ball-milling process. During milling, the iron powder was subjected to the deformation, resulting in the shape change to the platelet. Simultaneously, a (001) fiber texture was formed preferentially, as it is characteristic of the deformed bcc metal. The powder was then compacted into a toroidal shape. The platelet surface of the powder was oriented so as to become parallel to the toroidal direction. Consequently, the easy magnetization axis, which lies along the platelet surface, was also oriented to the toroidal direction. The toroidal compact prepared in this way exhibited excellent magnetic properties. For example, the permeability was approximately 2.4 times higher than that of the compact prepared from a conventional iron powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.