Static encephalopathy of childhood with neurodegeneration in adulthood (SENDA) is a recently established subtype of neurodegeneration with brain iron accumulation (NBIA). By exome sequencing, we found de novo heterozygous mutations in WDR45 at Xp11.23 in two individuals with SENDA, and three additional WDR45 mutations were identified in three other subjects by Sanger sequencing. Using lymphoblastoid cell lines (LCLs) derived from the subjects, aberrant splicing was confirmed in two, and protein expression was observed to be severely impaired in all five. WDR45 encodes WD-repeat domain 45 (WDR45). WDR45 (also known as WIPI4) is one of the four mammalian homologs of yeast Atg18, which has an important role in autophagy. Lower autophagic activity and accumulation of aberrant early autophagic structures were demonstrated in the LCLs of the affected subjects. These findings provide direct evidence that an autophagy defect is indeed associated with a neurodegenerative disorder in humans.
Heterotrimeric G proteins, composed of α, β, and γ subunits, can transduce a variety of signals from seven-transmembrane-type receptors to intracellular effectors. By whole-exome sequencing and subsequent mutation screening, we identified de novo heterozygous mutations in GNAO1, which encodes a Gαo subunit of heterotrimeric G proteins, in four individuals with epileptic encephalopathy. Two of the affected individuals also showed involuntary movements. Somatic mosaicism (approximately 35% to 50% of cells, distributed across multiple cell types, harbored the mutation) was shown in one individual. By mapping the mutation onto three-dimensional models of the Gα subunit in three different complexed states, we found that the three mutants (c.521A>G [p.Asp174Gly], c.836T>A [p.Ile279Asn], and c.572_592del [p.Thr191_Phe197del]) are predicted to destabilize the Gα subunit fold. A fourth mutant (c.607G>A), in which the Gly203 residue located within the highly conserved switch II region is substituted to Arg, is predicted to impair GTP binding and/or activation of downstream effectors, although the p.Gly203Arg substitution might not interfere with Gα binding to G-protein-coupled receptors. Transient-expression experiments suggested that localization to the plasma membrane was variably impaired in the three putatively destabilized mutants. Electrophysiological analysis showed that Gαo-mediated inhibition of calcium currents by norepinephrine tended to be lower in three of the four Gαo mutants. These data suggest that aberrant Gαo signaling can cause multiple neurodevelopmental phenotypes, including epileptic encephalopathy and involuntary movements.
Summary
Purpose
KCNQ2 mutations have been found in patients with benign familial neonatal seizures, myokymia, or early onset epileptic encephalopathy (EOEE). In this study, we aimed to delineate the clinical spectrum of EOEE associated with KCNQ2 mutation.
Methods
A total of 239 patients with EOEE, including 51 cases with Ohtahara syndrome and 104 cases with West syndrome, were analyzed by high‐resolution melting (HRM) analysis or whole‐exome sequencing. Detailed clinical information including electroencephalography (EEG) and brain magnetic resonance imaging (MRI) were collected from patients with KCNQ2 mutation.
Key Findings
A total of nine de novo and one inherited mutations were identified (two mutations occurred recurrently). The initial seizures, which were mainly tonic seizures, occurred in the early neonatal period in all 12 patients. A suppression‐burst pattern on EEG was found in most. Only three patients showed hypsarrhythmia on EEG; eight patients became seizure free when treated with carbamazepine, zonisamide, phenytoin, topiramate, or valproic acid. Although the seizures were relatively well controlled, moderate‐to‐profound intellectual disability was found in all except one patient who died at 3 months.
Significance
De novo KCNQ2 mutations are involved in EOEE, most of which cases were diagnosed as Ohtahara syndrome. These cases showed distinct features with early neonatal onset, tonic seizures, a suppression‐burst EEG pattern, infrequent evolution to West syndrome, and good response to sodium channel blockers, but poor developmental prognosis. Genetic testing for KCNQ2 should be considered for patients with EOEE.
Our study confirmed that SCN2A mutations are an important genetic cause of OS. Given the wide clinical spectrum associated with SCN2A mutations, genetic testing for SCN2A should be considered for children with different epileptic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.