Abstract. The currently used classification reflects our understanding of the pathogenesis of the various forms of lupus nephritis, but clinicopathologic studies have revealed the need for improved categorization and terminology. Based on the 1982 classification published under the auspices of the World Health Organization (WHO) and subsequent clinicopathologic data, we propose that class I and II be used for purely mesangial involvement (I, mesangial immune deposits without mesangial hypercellularity; II, mesangial immune deposits with mesangial hypercellularity); class III for focal glomerulonephritis (involving Ͻ50% of total number of glomeruli) with subdivisions for active and sclerotic lesions; class IV for diffuse glomerulonephritis (involving Ն50% of total number of glomeruli) either with segmental (class IV-S) or global (class IV-G) involvement, and also with subdivisions for active and sclerotic lesions; class V for membranous lupus nephritis; and class VI for advanced sclerosing lesions]. Combinations of membranous and proliferative glomerulonephritis (i.e., class III and V or class IV and V) should be reported individually in the diagnostic line. The diagnosis should also include entries for any concomitant vascular or tubulointerstitial lesions. One of the main advantages of the current revised classification is that it provides a clear and unequivocal description of the various lesions and classes of lupus nephritis, allowing a better standardization and lending a basis for further clinicopathologic studies. We hope that this revision, which evolved under the auspices of the International Society of Nephrology and the Renal Pathology Society, will contribute to further advancement of the WHO classification.The morphologic changes in a renal biopsy from a patient with systemic lupus erythematosus (SLE) comprise a spectrum of vascular, glomerular, and tubulointerstitial lesions. The classification of SLE nephritis has evolved over the past 40 years as more lesions were identified and defined. It has been an increasing challenge to apply new pathogenetic insights to the interpretation of the renal biopsy in SLE and to correlate pathologic findings with clinical symptoms, choice of treatment, and prognosis. The current classification, which was advanced in 1982 (1) and revised in 1995 (2), reflects our understanding of the pathogenesis of the various forms of renal injury in SLE nephritis. However, subsequent clinicopathologic studies have revealed the need for clarification of the different categories and the diagnostic terminology. The clas-
The currently used classification reflects our understanding of the pathogenesis of the various forms of lupus nephritis, but clinicopathologic studies have revealed the need for improved categorization and terminology. Based on the 1982 classification published under the auspices of the World Health Organization (WHO) and subsequent clinicopathologic data, we propose that class I and II be used for purely mesangial involvement (I, mesangial immune deposits without mesangial hypercellularity; II, mesangial immune deposits with mesangial hypercellularity); class III for focal glomerulonephritis (involving <50% of total number of glomeruli) with subdivisions for active and sclerotic lesions; class IV for diffuse glomerulonephritis (involving > or =50% of total number of glomeruli) either with segmental (class IV-S) or global (class IV-G) involvement, and also with subdivisions for active and sclerotic lesions; class V for membranous lupus nephritis; and class VI for advanced sclerosing lesions. Combinations of membranous and proliferative glomerulonephritis (i.e., class III and V or class IV and V) should be reported individually in the diagnostic line. The diagnosis should also include entries for any concomitant vascular or tubulointerstitial lesions. One of the main advantages of the current revised classification is that it provides a clear and unequivocal description of the various lesions and classes of lupus nephritis, allowing a better standardization and lending a basis for further clinicopathologic studies. We hope that this revision, which evolved under the auspices of the International Society of Nephrology and the Renal Pathology Society, will contribute to further advancement of the WHO classification.
Amyotrophic lateral sclerosis (ALS) has its onset in middle age and is a progressive disorder characterized by degeneration of motor neurons of the primary motor cortex, brainstem and spinal cord. Most cases of ALS are sporadic, but about 10% are familial. Genes known to cause classic familial ALS (FALS) are superoxide dismutase 1 (SOD1), ANG encoding angiogenin, TARDP encoding transactive response (TAR) DNA-binding protein TDP-43 (ref. 4) and fused in sarcoma/translated in liposarcoma (FUS, also known as TLS). However, these genetic defects occur in only about 20-30% of cases of FALS, and most genes causing FALS are unknown. Here we show that there are mutations in the gene encoding optineurin (OPTN), earlier reported to be a causative gene of primary open-angle glaucoma (POAG), in patients with ALS. We found three types of mutation of OPTN: a homozygous deletion of exon 5, a homozygous Q398X nonsense mutation and a heterozygous E478G missense mutation within its ubiquitin-binding domain. Analysis of cell transfection showed that the nonsense and missense mutations of OPTN abolished the inhibition of activation of nuclear factor kappa B (NF-kappaB), and the E478G mutation revealed a cytoplasmic distribution different from that of the wild type or a POAG mutation. A case with the E478G mutation showed OPTN-immunoreactive cytoplasmic inclusions. Furthermore, TDP-43- or SOD1-positive inclusions of sporadic and SOD1 cases of ALS were also noticeably immunolabelled by anti-OPTN antibodies. Our findings strongly suggest that OPTN is involved in the pathogenesis of ALS. They also indicate that NF-kappaB inhibitors could be used to treat ALS and that transgenic mice bearing various mutations of OPTN will be relevant in developing new drugs for this disorder.
There is a rapid global rise in obesity, and the link between obesity and diabetes remains somewhat obscure. We identified an adipocytokine, designated as visceral adipose tissue-derived serpin (vaspin), which is a member of serine protease inhibitor family. Vaspin cDNA was isolated by from visceral white adipose tissues (WATs) of Otsuka Long-Evans Tokushima fatty (OLETF) rat, an animal model of abdominal obesity with type 2 diabetes. Rat, mouse, and human vaspins are made up of 392, 394, and 395 amino acids, respectively; exhibit Ϸ40% homology with ␣1-antitrypsin; and are related to serine protease inhibitor family. Vaspin was barely detectable in rats at 6 wk and was highly expressed in adipocytes of visceral WATs at 30 wk, the age when obesity, body weight, and insulin levels peak in OLETF rats. The tissue expression of vaspin and its serum levels decrease with worsening of diabetes and body weight loss at 50 wk. The expression and serum levels were normalized with the treatment of insulin or insulinsensitizing agent, pioglitazone, in OLETF rats. Administration of vaspin to obese CRL:CD-1 (ICR) (ICR) mice fed with high-fat highsucrose chow improved glucose tolerance and insulin sensitivity reflected by normalized serum glucose levels. It also led to the reversal of altered expression of genes relevant to insulin resistance, e.g., leptin, resistin, TNF␣, glucose transporter-4, and adiponectin. In DNA chip analyses, vaspin treatment resulted in the reversal of expression in Ϸ50% of the high-fat high-sucroseinduced genes in WATs. These findings indicate that vaspin exerts an insulin-sensitizing effect targeted toward WATs in states of obesity.metabolic syndrome ͉ diabetes ͉ insulin resistance ͉ mesenteric ͉ white adipose tissue
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.