Patients with chronic renal failure often have hypertension, but the cause of hypertension, other than an excess of body fluid, is not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are stimulated by uremic toxins in patients with chronic renal failure. To investigate whether RVLM neurons are sensitive to uremic toxins, such as uric acid, indoxyl sulfate, or methylguanidine, we examined changes in the membrane potentials (MPs) of bulbospinal RVLM neurons of Wister rats using the whole-cell patch-clamp technique during superfusion with these toxins. A brainstem-spinal cord preparation that preserved the sympathetic nervous system was used for the experiments. During uric acid, indoxyl sulfate, or methylguanidine superfusion, almost all the RVLM neurons were depolarized. To examine the transporters for these toxins on RVLM neurons, histological examinations were performed. The uric acid-, indoxyl sulfate-, and methylguanidine-depolarized RVLM neurons showed the presence of urate transporter 1 (URAT 1), organic anion transporter (OAT)1 or OAT3, and organic cation transporter (OCT)3, respectively. Furthermore, the toxin-induced activities of the RVLM neurons were suppressed by the addition of an anti-oxidation drug (VAS2870, an NAD(P)H oxidase inhibitor), and a histological examination revealed the presence of NAD(P)H oxidase (nox)2 and nox4 in these RVLM neurons. The present results show that uric acid, indoxyl sulfate, and methylguanidine directly stimulate bulbospinal RVLM neurons via specific transporters on these neurons and by producing oxidative stress. These uremic toxins may cause hypertension by activating RVLM neurons.
Intracranial hemorrhage (ICH) is a devastating disease which induces high mortality and poor outcomes including severe neurological dysfunctions. ICH pathology is divided into two types: primary brain injury (PBI) and secondary brain injury (SBI). Although there are numerous preclinical studies documenting neuroprotective agents in experimental ICH models, no effective drugs have been developed for clinical use due to complicated ICH pathology. Oxidative and inflammatory stresses play central roles in the onset and progression of brain injury after ICH, especially SBI. Nrf2 is a crucial transcription factor in the anti-oxidative stress defense system. Under normal conditions, Nrf2 is tightly regulated by the Keap1. Under ICH pathological conditions, such as overproduction of reactive oxygen species (ROS), Nrf2 is translocated into the nucleus where it up-regulates the expression of several anti-oxidative phase II enzymes such as heme oxygenase-1 (HO-1). Recently, many reports have suggested the therapeutic potential of Nrf2 activators (including natural or synthesized compounds) for treating neurodegenerative diseases. Moreover, several Nrf2 activators attenuate ischemic stroke-induced brain injury in several animal models. This review summarizes the efficacy of several Nrf2 activators in ICH animal models. In the future, Nrf2 activators might be approved for the treatment of ICH patients.
The secretory mechanism of rat atrial natriuretic peptide (rANP) was studied in vitro with the use of primary culture of atrial myocytes from neonatal rats. Norepinephrine, phenylephrine, and carbamylcholine stimulated immunoreactive (IR) rANP secretion, whereas neither angiotensin II, arginine vasopressin, nor isoproterenol affected its secretion. The stimulatory effects of carbamylcholine and phenylephrine were blocked by atropine and prazosin, respectively. 12-O-tetradecanoylphorbol-beta-acetate (TPA), protein kinase C activator, induced a dose-dependent increase in IR rANP secretion, and TPA combined with Ca2+ ionophore ionomycin produced a synergistic effect. Ca2+-channel agonist BAY K 8644 also stimulated IR rANP secretion, the effect of which was blocked by Ca2+-channel antagonist nifedipine. These data suggest that alpha 1-adrenergic and muscarinic cholinergic agonists have direct action on rat cardiocytes to stimulate ANP secretion that involves receptor-mediated mobilization of intracellular Ca2+ and activation of protein kinase C.
Although the effects of dipeptidyl peptidase 4 (DPP-4) inhibitors beyond their hypoglycemic action have been reported, whether these inhibitors have renoprotective effects in nondiabetic chronic kidney disease (CKD) is unclear. We examined the therapeutic effects of DPP-4 inhibition in mice with unilateral ureteral obstruction (UUO), a nondiabetic model of progressive renal fibrosis. After UUO surgery, mice were administered either the DPP-4 inhibitor alogliptin or a vehicle by oral gavage once a day for 10 days. Physiological parameters, degrees of renal fibrosis and inflammation, and molecules related to renal fibrosis and inflammation were then evaluated using sham-operated mice as controls. Positive area of α-smooth muscle actin was significantly smaller and expression of transforming growth factor β messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group. Renal total collagen content was also significantly lower in the alogliptin-treated group than in the vehicle-treated group. These results suggest that alogliptin exerted renoprotective antifibrotic effects. The positive area of F4/80 was significantly smaller and expression of CD68 messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group, suggesting an anti-inflammatory action by the DPP-4 inhibitor. Compared to the results for the vehicle-treated group, expression of markers for M1 macrophages tended to be lower in the alogliptin-treated group, and the relative expression of M2 macrophages tended to be higher. These data indicate the various protective effects of DPP-4 inhibition in nondiabetic mice with UUO. DPP-4 inhibitors may therefore be promising therapeutic choices even for nondiabetic CKD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.