Iodide-oxidizing bacteria (IOB), which oxidize iodide (I-) to molecular iodine (I2), were isolated from iodide-rich (63 microM to 1.2 mM) natural gas brine waters collected from several locations. Agar media containing iodide and starch were prepared, and brine waters were spread directly on the media. The IOB, which appeared as purple colonies, were obtained from 28 of the 44 brine waters. The population sizes of IOB in the brines were 10(2) to 10(5) colony-forming units (CFU) mL(-1). However, IOB were not detected in natural seawaters and terrestrial soils (fewer than 10 CFU mL(-1) and 10(2) CFU g wet weight of soils(-1), respectively). Interestingly, after the enrichment with 1 mM iodide, IOB were found in 6 of the 8 seawaters with population sizes of 10(3) to 10(5) CFU mL(-1). 16S rDNA sequencing and phylogenetic analyses showed that the IOB strains are divided into two groups within the alpha-subclass of the Proteobacteria. One of the groups was phylogenetically most closely related to Roseovarius tolerans with sequence similarities between 94% and 98%. The other group was most closely related to Rhodothalassium salexigens, although the sequence similarities were relatively low (89% to 91%). The iodide-oxidizing reaction by IOB was mediated by an extracellular enzyme protein that requires oxygen. Radiotracer experiments showed that IOB produce not only I2 but also volatile organic iodine, which were identified as diiodomethane (CH2I2) and chloroiodomethane (CH2ClI). These results indicate that at least two types of IOB are distributed in the environment, and that they are preferentially isolated in environments in which iodide levels are very high. It is possible that IOB oxidize iodide in the natural environment, and they could significantly contribute to the biogeochemical cycling of iodine.
The roles of microorganisms in iodine volatilization from soils were studied. Soils were incubated with iodide ion (I-), and volatile organic iodine species were determined with a gas chromatograph. Iodine was emitted mainly as methyl iodide (CH3I), and CH3I emission was sometimes enhanced by the addition of glucose. Soils were then incubated with a radioactive iodine tracer (125I), and radioiodine emitted from soils was determined. The emission of iodine was enhanced in the presence of yeast extract but was inhibited by autoclaving of soils. The addition of streptomycin and tetracycline, antibiotics that inhibit bacterial growth, strongly inhibited iodine emission, while a fungal inhibitor cycloheximide caused little effect. Forty bacterial strains were randomly isolated from soils, and their capacities for volatilizing iodine were determined. Among these, 14 strains volatilized significant amounts of iodine when they were cultivated with iodide ion. Phylogenetic analysis based on 16S ribosomal DNA sequences showed thatthese bacteria are widely distributed through the bacterial domain. Our results suggest that iodine in soils is methylated and volatilized as CH3I by the action of soil bacteria and that iodine-volatilizing bacteria are ubiquitous in soil environments. The pathway of iodine volatilization by soil bacteria should be important for understanding the biogeochemical cycling of iodine as well as for the assessment of long-lived radioactive iodine (129I) in the environment.
Bacterial iodate (IO 3؊ ) reduction is poorly understood largely due to the limited number of available isolates as well as the paucity of information about key enzymes involved in the reaction. In this study, an iodatereducing bacterium, designated strain SCT, was newly isolated from marine sediment slurry. SCT is phylogenetically closely related to the denitrifying bacterium Pseudomonas stutzeri and reduced 200 M iodate to iodide (I ؊ ) within 12 h in an anaerobic culture containing 10 mM nitrate. The strain did not reduce iodate under the aerobic conditions. An anaerobic washed cell suspension of SCT reduced iodate when the cells were pregrown anaerobically with 10 mM nitrate and 200 M iodate. However, cells pregrown without iodate did not reduce it. The cells in the former category showed methyl viologen-dependent iodate reductase activity (0.31 U mg ؊1 ), which was located predominantly in the periplasmic space. Furthermore, SCT was capable of anaerobic growth with 3 mM iodate as the sole electron acceptor, and the cells showed enhanced activity with respect to iodate reductase (2.46 U mg ؊1 ). These results suggest that SCT is a dissimilatory iodate-reducing bacterium and that its iodate reductase is induced by iodate under anaerobic growth conditions.
At least five types of beta-fructofuranosidases (FFases I, II, III, IV and V) were found in the cell wall of Aureobasidium pullulans DSM2404 grown in a sucrose medium. The fungus first catalyzed the transfructosylation of sucrose, and produced fructooligosaccharide (FOS) and glucose in the culture. FOS was then consumed together with glucose, and finally fructose was produced. In the FOS-producing period, the fungus expressed FFase I as a dominant FFase. However, in the FOS-degrading period, the levels of FFases II, III, IV and V increased. The ratios of transfructosylating activity to hydrolyzing activity by FFases I-V were 14.3, 12.1, 11.7, 1.28 and 8.11, respectively. When glucose was used as a carbon source, only FFase I showed significant activity. On the other hand, the activities of all five FFases were detected when FOS or fructose was used as a carbon source. These results suggested that the expression of FFase I was not repressed by glucose, but those of FFases II-V were strongly inhibited in the presence of glucose. It is considered that FFase I plays a key role in FOS production by this fungus, whereas FFase IV may function as a FOS-degrading enzyme with its strong hydrolyzing activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.