IL-17A is a T cell-derived proinflammatory cytokine that contributes to the pathogenesis of rheumatoid arthritis. Recently, six related molecules have been identified to form the IL-17 family, as follows: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. Whereas IL-17A and IL-17F up-regulate IL-6 in synovial fibroblasts, IL-17B and IL-17C are reported to stimulate the release of TNF-α and IL-1β from the monocytic cell line, THP-1 cell. However, their detailed function remains to be elucidated. We report in this study the effects of IL-17 family on the collagen-induced arthritis (CIA) progression by T cell gene transfer and bone marrow chimeric mice. The mRNA expressions of IL-17 family (IL-17A, IL-17B, IL-17C, and IL-17F) and their receptor (IL-17R and IL-17Rh1) genes in the arthritic paws of CIA mice were elevated compared with controls. Although IL-17A and IL-17F were expressed in CD4+ T cells, IL-17B and IL-17C were expressed in the cartilage and in various cell populations in the CIA arthritic paws, respectively. In vitro, IL-17A, IL-17B, IL-17C, and IL-17F induced TNF-α production in mouse peritoneal exudate cells. In vivo, adoptive transfer of IL-17B- and IL-17C-transduced CD4+ T cells evidently exacerbated arthritis. Bone marrow chimeric mice of IL-17B and IL-17C exhibited elevated serum TNF-α concentration and the high arthritis score upon CIA induction. Moreover, neutralization of IL-17B significantly suppressed the progression of arthritis and bone destruction in CIA mice. Therefore, not only IL-17A, but also IL-17B and IL-17C play an important role in the pathogenesis of inflammatory arthritis.
Autoantibodies induce various autoimmune diseases, including systemic lupus
erythematosus (SLE). We previously described that CD4+CD25−LAG3+ regulatory T cells (LAG3+ Treg) are regulated by
Egr2, a zinc-finger
transcription factor required for the induction of T-cell anergy. We herein
demonstrate that LAG3+ Treg produce high amounts of TGF-β3 in an Egr2- and Fas-dependent manner. LAG3+ Treg require TGF-β3 to suppress B-cell
responses in a murine model of lupus. Moreover, TGF-β3- and LAG3+ Treg-mediated suppression requires
PD-1 expression on B cells. We
also show that TGF-β3-expressing human LAG3+ Treg suppress antibody production and that
SLE patients exhibit decreased frequencies of LAG3+ Treg. These results clarify the mechanism
of B-cell regulation and suggest therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.