Hyperglycemia-induced embryonic malformations may be due to an increase in radical formation and depletion of intracellular glutathione (GSH) in embryonic tissues. In the past, we have investigated the role of the glutathione-dependent antioxidant system and GSH on diabetes-related embryonic malformations. Embryos from streptozotocin-induced diabetic rats on gestational day 11 showed a significantly higher frequency of embryonic malformations (neural lesions 21.5 vs. 2.8%, P<0.001; nonneural lesions 47.4 vs. 6.4%, P<0.001) and growth retardation than those of normal mothers. The formation of intracellular reactive oxygen species (ROS), estimated by flow cytometry, was increased in isolated embryonic cells of diabetic rats on gestational day 11. The concentration of intracellular GSH in embryonic tissues of diabetic pregnant rats on day 11 was significantly lower than that of normal rats. The activity of y-glutamylcysteine synthetase (gamma-GCS), the rate-limiting GSH synthesizing enzyme, in embryos of diabetic rats was significantly low, associated with reduced expression of gamma-GCS mRNA. Administration of buthionine sulfoxamine (BSO), a specific inhibitor of gamma-GCS, to diabetic rats during the period of maximal teratogenic susceptibility (days 6-11 of gestation) reduced GSH by 46.7% and increased the frequency of neural lesions (62.1 vs. 21.5%, P<0.01) and nonneural lesions (79.3 vs. 47.4%, P<0.01). Administration of GSH ester to diabetic rats restored GSH concentration in the embryos and reduced the formation of ROS, leading to normalization of neural lesions (1.9 vs. 21.5%) and improvement in nonneural lesions (26.7 vs. 47.4%) and growth retardation. Administration of insulin in another group of pregnant rats during the same period resulted in complete normalization of neural lesions (4.3 vs. 21.5%), nonneural lesions (4.3 vs. 47.4%), and growth retardation with the restoration of GSH contents. Our results indicate that GSH depletion and impaired responsiveness of GSH-synthesizing enzyme to oxidative stress during organogenesis may have important roles in the development of embryonic malformations in diabetes.
Autoantibodies to glutamic acid decarboxylase (GAD), previously reported to be the 64,000-M(r) (64K) islet cell protein, were measured by a radioimmunoassay using purified pig brain GAD in 29 insulin-dependent diabetes mellitus (IDDM) patients with autoimmune thyroid disease (AITD) and in 29 sex- and disease duration-matched IDDM patients without AITD. Islet cell antibodies (ICAs) and 64K antibodies were also determined. In IDDM patients with short-duration diabetes (< 1 year), the prevalence and levels of GAD antibodies were 100% (8 of 8) and 609 +/- 166 U (means +/- SE), respectively, in IDDM patients with AITD and 81.8% (9 of 11) and 90 +/- 51 U, respectively, in patients without AITD. In patients with long-standing IDDM (3-22 years), the prevalence and levels of GAD antibodies were 76.2% (16 of 21) and 193 +/- 66 U, respectively, in patients with AITD and 50.0% (9 of 18) and 36 +/- 14 U, respectively, in patients without AITD. For up to 6 years after the onset of IDDM, the levels of GAD antibodies in IDDM patients with AITD were significantly higher than in IDDM patients without AITD. A close and significant correlation was found between GAD antibodies and ICA or 64K antibodies in IDDM patients with AITD. Our results demonstrate that high levels of GAD antibodies were present in IDDM patients with AITD. The observed differences in GAD immunoreactivity between IDDM patients with and without AITD might help evaluate the role of GAD antibodies in IDDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.