Yttria-based zirconia material (Y-TZP) widely used in dentistry, may degrade in a humid, low-temperature environment such as that in the oral cavity. The aim of this study was to compare the degradation of a new silica doped Y-TZP material with that of conventional Y-TZP by using accelerated aging tests at 200°C. The results of the accelerated tests revealed that after 50 hours of aging, the conventional Y-TZP samples had damaged surfaces that were weakened by 50 to 60%, while the silica-doped Y-TZP samples were only weakened by less than 20%. The monoclinic content of the conventional Y-TZP samples increased substantially to 62.7%, however, that of silica-doped Y-TZP samples was 18.9% after 5 hours of aging. It was concluded that a new type of silica-doped Y-TZP, created by adding a small amount of silica to Y-TZP, will be more resistant to low temperature degradation than conventional Y-TZP.
The purpose of this study was to examine the translucency and low-temperature degradation of silica-doped experimental Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) containing almost no alumina. The experimental Y-TZP samples were sintered at either 1,450 or 1,500°C. The samples of commercially available translucent Y-TZP and conventional Y-TZP were used as controls. The contrast ratio (CR) and translucency parameter (TP) were obtained to compare the translucencies. In addition, the specimens were also subjected to an accelerated aging test. The results showed that the experimental Y-TZP sintered at 1,500°C and translucent Y-TZP exhibited almost the same level of translucency. During the accelerated aging test, the translucent Y-TZP underwent a substantial increase in monoclinic content, an index of degradation after the aging test. However, neither the experimental Y-TZP nor the conventional Y-TZP exhibited any appreciable change. It was concluded that the silica-doped Y-TZP will develop translucency and resistance to degradation when sintered at 1,500°C.
In this study, two types of porous zirconia and dense zirconia were used. The flexural strength of non-layered zirconia specimens and those of the layered zirconia specimens with veneering porcelain were examined. Furthermore, the shear bond strength of veneering porcelain to zirconia was examined. The flexural strength of the non-layered specimens was 1,220 MPa for dense zirconia and 220 to 306 MPa for porous zirconia. The flexural strength of the layered specimens was 360 MPa for dense zirconia and 132 to 156 MPa for porous zirconia, when a load was applied to the porcelain side. The shear bond strength of porcelain veneered to dense zirconia was 27.4 MPa and that of porcelain veneered to porous zirconia was 33.6 to 35.1 MPa. This suggests that the veneering porcelain bonded strongly to porous zirconia although porous zirconia has a lower flexural strength than dense zirconia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.