Stimulation of B lymphocytes through their antigen receptor (BCR) results in rapid increases in tyrosine phosphorylation on a number of proteins and induces both an increase of phosphatidylinositol and mobilization of cytoplasmic free calcium. The BCR associates with two classes of tyrosine kinase: Src‐family kinase (Lyn, Fyn, Blk or Lck) and Syk kinase. To dissect the functional roles of these two types of kinase in BCR signaling, lyn‐negative and syk‐negative B cell lines were established. Syk‐deficient B cells abolished the tyrosine phosphorylation of phospholipase C‐gamma 2, resulting in the loss of both inositol 1,4,5‐trisphosphate (IP3) generation and calcium mobilization upon receptor stimulation. Crosslinking of BCR on Lyn‐deficient cells evoked a delayed and slow Ca2+ mobilization, despite the normal kinetics of IP3 turnover. These results demonstrate that Syk mediates IP3 generation, whereas Lyn regulates Ca2+ mobilization through a process independent of IP3 generation.
In this study, we have identified a novel mitochondrial ubiquitin ligase, designated MITOL, which is localized in the mitochondrial outer membrane. MITOL possesses a Plant Homeo-Domain (PHD) motif responsible for E3 ubiquitin ligase activity and predicted four-transmembrane domains. MITOL displayed a rapid degradation by autoubiquitination activity in a PHD-dependent manner. HeLa cells stably expressing a MITOL mutant lacking ubiquitin ligase activity or MITOL-deficient cells by small interfering RNA showed an aberrant mitochondrial morphology such as fragmentation, suggesting the enhancement of mitochondrial fission by MITOL dysfunction. Indeed, a dominant-negative expression of Drp1 mutant blocked mitochondrial fragmentation induced by MITOL depletion. We found that MITOL associated with and ubiquitinated mitochondrial fission protein hFis1 and Drp1. Pulse-chase experiment showed that MITOL overexpression increased turnover of these fission proteins. In addition, overexpression phenotype of hFis1 could be reverted by MITOL cooverexpression. Our finding indicates that MITOL plays a critical role in mitochondrial dynamics through the control of mitochondrial fission proteins.
Non-receptor type of protein-tyrosine kinase Syk contains 2 Src homology 2 (SH2) domains in tandem and multiple autophosphorylation sites. Syk is activated upon binding of tandem SH2 domains to immunoreceptor tyrosine-based activating motif (ITAM) and plays an essential role in lymphocyte development and activation of immune cells. Syk is critical for tyrosine phosphorylation of multiple proteins which regulate important pathways leading from the receptor, such as Ca(2+) mobilization and mitogen-activated protein kinase (MAPK) cascades. Recent findings reveal that expression of Syk appears to be involved in a wide variety of cellular functions and pathogenesis of malignant cancer. These observations have demonstrated that Syk is a key molecule that controls multiple physiological functions in cells.
Backgrounds: A mouse receptor tyrosine kinase (RTK), mRor2, which belongs to the Ror-family of RTKs consisting of at least two structurally related members, is primarily expressed in the heart and nervous system during mouse development. To elucidate the function of mRor2, we generated mice with a mutated mRor2 locus.
SummaryTo explore the mechanism(s) by which the Syk protein tyrosine kinase participates in B cell antigen receptor (BCR) signaling, we have studied the function of various Syk mutants in B cells made Syk deficient by homologous recombination knockout . Both Syk SH2 domains were required for BCR-mediated Syk and phospholipase C (PLC)-y2 phosphorylation, inositol 1,4,5-triphosphate release, and Ca" mobilization. A possible explanation for this requirement was provided by findings that recruitment of Syk to tyrosine-phosphorylated immunoglobulin (Ig) o and Igo requires both Syk SH2 domains . A Syk mutant in which the putative autophosphorylation site (Y518/Y519) of Syk was changed to phenylalanine was also defective in signal transduction ; however, this mutation did not affect recruitment to the phosphorylated immunoreceptor family tyrosine-based activation motifs (ITAMs) . These findings not only confirm that both SH2 domains are necessary for Syk binding to tyrosine-phosphorylated Iga and Ig[3 but indicate that this binding is necessary for Syk (Y518/519) phosphorylation after BCR ligation. This sequence of events is apparently required for coupling the BCR to most cellular protein tyrosine phosphorylation, to the phosphorylation and activation of PLC-y2, and to Ca 21 mobilization .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.