Eukaryotic cells repair DNA double-strand breaks (DSBs) by at least two pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ).Rad54 participates in the first recombinational repair pathway while Ku proteins are involved in NHEJ. To investigate the distinctive as well as redundant roles of these two repair pathways, we analyzed the mutants RAD54 -/-, KU70 -/-and RAD54 -/-/KU70 -/-, generated from the chicken B-cell line DT40. We found that the NHEJ pathway plays a dominant role in repairing γ-radiation-induced DSBs during G 1 -early S phase while recombinational repair is preferentially used in late S-G 2 phase. RAD54 -/-/KU70 -/-cells were profoundly more sensitive to γ-rays than either single mutant, indicating that the two repair pathways are complementary. Spontaneous chromosomal aberrations and cell death were observed in both RAD54 -/-and RAD54 -/-/KU70 -/-cells, with RAD54 -/-/KU70 -/-cells exhibiting significantly higher levels of chromosomal aberrations than RAD54 -/-cells. These observations provide the first genetic evidence that both repair pathways play a role in maintaining chromosomal DNA during the cell cycle.
Yeast rad51 mutants are viable, but extremely sensitive to γ-rays due to defective repair of double-strand breaks. In contrast, disruption of the murine RAD51 homologue is lethal, indicating an essential role of Rad51 in vertebrate cells. We generated clones of the chicken B lymphocyte line DT40 carrying a human RAD51 transgene under the control of a repressible promoter and subsequently disrupted the endogenous RAD51 loci. Upon inhibition of the RAD51 transgene, Rad51 -cells accumulated in the G 2 /M phase of the cell cycle before dying. Chromosome analysis revealed that most metaphase-arrested Rad51 -cells carried isochromatid-type breaks. In conclusion, Rad51 fulfils an essential role in the repair of spontaneously occurring chromosome breaks in proliferating cells of higher eukaryotes.
Stimulation of B lymphocytes through their antigen receptor (BCR) results in rapid increases in tyrosine phosphorylation on a number of proteins and induces both an increase of phosphatidylinositol and mobilization of cytoplasmic free calcium. The BCR associates with two classes of tyrosine kinase: Src‐family kinase (Lyn, Fyn, Blk or Lck) and Syk kinase. To dissect the functional roles of these two types of kinase in BCR signaling, lyn‐negative and syk‐negative B cell lines were established. Syk‐deficient B cells abolished the tyrosine phosphorylation of phospholipase C‐gamma 2, resulting in the loss of both inositol 1,4,5‐trisphosphate (IP3) generation and calcium mobilization upon receptor stimulation. Crosslinking of BCR on Lyn‐deficient cells evoked a delayed and slow Ca2+ mobilization, despite the normal kinetics of IP3 turnover. These results demonstrate that Syk mediates IP3 generation, whereas Lyn regulates Ca2+ mobilization through a process independent of IP3 generation.
The Rad51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a central role in both mitotic and meiotic homologous DNA recombination (HR) in Saccharomyces cerevisiae and is essential for the proliferation of vertebrate cells. Five vertebrate genes, RAD51B, -C, and -D and XRCC2 and -3, are implicated in HR on the basis of their sequence similarity to Rad51 (Rad51 paralogs). We generated mutants deficient in each of these proteins in the chicken B-lymphocyte DT40 cell line and report here the comparison of four new mutants and their complemented derivatives with our previously reported rad51b mutant. The Rad51 paralog mutations all impair HR, as measured by targeted integration and sister chromatid exchange. Remarkably, the mutant cell lines all exhibit very similar phenotypes: spontaneous chromosomal aberrations, high sensitivity to killing by cross-linking agents (mitomycin C and cisplatin), mild sensitivity to gamma rays, and significantly attenuated Rad51 focus formation during recombinational repair after exposure to gamma rays. Moreover, all mutants show partial correction of resistance to DNA damage by overexpression of human Rad51. We conclude that the Rad51 paralogs participate in repair as a functional unit that facilitates the action of Rad51 in HR.Double-strand DNA breaks (DSBs) are produced by ionizing radiation (IR) and certain chemicals, and they likely occur frequently during DNA replication (21, 34). A single unrepaired DSB may stimulate cell cycle checkpoints and cause cell death (3, 25). Homologous recombination (HR) has emerged as a major DSB repair pathway in mammalian cells (29,35,44,65,66), as well as in the yeast Saccharomyces cerevisiae. Indeed, the analysis of radiosensitive yeast mutants has revealed a number of key genes involved in HR, which comprise the RAD52 epistasis group (2,32,54), and the HR pathway is conserved from yeast to humans (4,18,53,65). Although yeast is capable of proliferating at a reduced rate in the absence of functional HR, this repair pathway is essential for viability in cycling vertebrate cells for coping with DNA lesions arising during DNA replication (55,56,67,73). This species difference is probably due to the several-hundred-fold difference in genome size between vertebrates and yeast.ScRad51 is closely related to the Escherichia coli recombination protein RecA (5). Among the proteins of the Rad52 epistasis group, Rad51 has the highest degree of structural and functional conservation among all eukaryotes. The high degree of identity of ScRad51 with the human homolog (59% identity) and chicken homolog (59% identity) suggests that Rad51's function is conserved across eukaryotes. A central role for Rad51 in HR in vertebrates is supported by the finding that Rad51 deficiency (36, 55, 67), but not Rad52 or Rad54 deficiency, is lethal to cells (4,18,49,72). In vitro studies show that RecA and Rad51 form multimeric helical nucleoprotein filaments that are assembled on single-stranded DNA (ssDNA) (2). Recent work suggests that the preferred DNA substrat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.